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1. Introduction

Unlike the standard economic theory assumes, the activity of airports yields var-
ious kinds of outputs, such as passenger loading/unloading, aircraft movements,
and cargo handling. Meanwhile, these outputs share the same set of inputs: cap-
ital, labor, land, and other miscellaneous materials. Therefore, measuring the
efficiency of the airport activities gives rise to several different methods that are
suited to this joint-production characteristic. The paper briefly discusses the con-
ventional methods such as partial-factor-productivity method, TFP method, and
DEA-oriented methods, and points out respectively their virtue, as well as their
built-in limitations in section 2.

As its main contribution, section 3 of this paper then develops the Endogenous-
Weight TFP method, which is the method actually employed in the Airport-
Benchmarking Project accomplished by the Air Transport Research Society [3].
This method will eliminate those limitations inherent to the conventional methods
while retaining the virtue of them to the full extent. This new method is indeed
general enough to be applied to any other joint-production industry other than
airport operation. The paper also presents simulation results from Monte-Carlo
experiments in an efficiency-ranking problem in the following section. Finally,
section 5 concludes.

2. Conventional Methods

2.1. Total-Factor-Productivity (TFP) Method

One easy way of measuring the production efficiency would be the partial-factor
productivity in which one each of input and output factors among multiple inputs
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and outputs are chosen to form a ratio. It is convenient and easy to compute,
however, there are many values for one firm/period, such as fuel efficiency or labor
efficiency, measured in terms of passenger or cargo volume, and thus it will never
represent a firm’s overall productivity/efficiency. This leads to the development
of the methods that uniquely measure overall production efficiency.

Caves, Christensen, and Diewert [5] proposed multilateral-index method. Un-
der the assumptions that the production structure is well described by the translog
transformation function and that the technology is constant-return-to-scale, they
have shown that the output index of one entity relative to a hypothetical repre-
sentative entity can be expressed as a function of output levels and revenue shares,
which they call the multilateral output index. Similar derivation shows that the
input index can be expressed as a function of input levels of all entities, and their
cost shares of each input.

Oum and Yu [9] utilizes this result in the following specification. Let k and
j denote two different firms or time periods, then the gross TFP is computed as
follows, as a comparison across firms or time periods:
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Required data are any two of

- revenue for each output for each firm/period
- price of each output for each firm/period
- quantity of each output for each firm /period
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and any two of

- expenditure for each input for each firm /period
- price of each input for each firm /period
- quantity of each input for each firm /period.

Once the gross TFP index is computed as above, it is regressed against a set
of explanatory variables to obtain the residual TFP. Two main objectives of this
two-step method are; to exclude the effects of variations such as those that are
beyond the managerial control; and to decompose the source of (in)efficiency of a
particular firm. This procedure is often referred to as the two-step TFP method.

2.2. Data-Envelopment-Analysis (DEA) Method

The original idea of the DEA method comes from Farrell [8]. More recently, Pels,
Nijkamp, and Rietveld [10] defines the production efficiency of a firm, whose input

and output vectors are (210, -+, Zn,0) and (Y10, -, Ya,0) respectively, as follows:
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where L is the number of firms, IV is the number of inputs, and M is the number of
outputs. The idea is that A’s change to maximize the difference between the input
vector of the firm and the linear combination of that of others, while holding the
output vector identical. Therefore, the efficiency measured through this method
is input-based. Also, since there is no restriction on the value of A’s, which is the
weight for the linear combination, this method assumes constant return to scale.
Figure 1 depicts the case of one input, one output, and two firms with subscripts
0 and [. In this situation, one may argue that local decreasing return to scale is
prevailing, as the sum of the A’s, the weights in the linear combination, which is
just one number A, is greater than unity.

DEA method has an advantage that it does not require price (or, revenue/cost)
data, however, it is sensitive to outliers and usually there are more than one most
efficient observations. This multiplicity of efficient units becomes more serious
when you impose variable or decreasing return to scale assumptions or when there
are more inputs/outputs.!

1One way to alleviate, not to eliminate this problem is to use the principle-component method
to reduce the number of variables.



Fare, Grosskopf, and Lovell [7] extends the DEA method introduced above,
which is referred to as Malmquist Productivity Measurement. One difference of
their method from the original DEA method is that it allows the decreasing return
to scale. Another is that it decomposes measured inefficiency into several different
reasons such as return to scale, allocation of inputs/outputs.

Let v/ and x? be the output and input vectors of firm j € {1,...,J} in R} and
RY respectively. Also, let M and N be the output and input matrices of these
J firms. Then under the constant-return assumption, the feasible set of input
vectors given output, defined as L (u| C,S) is given as follows:

L(u|c,5):{x|ugzM,xgzN,zeRi}, ue RY. (2.11)

This situation is depicted in Figure 2 where there are only one each of input and
output and two firms. In the case of non-increasing (decreasing) return to scale,
(2.11) becomes as follows:

J
L(u|N,S)= {X|u§ zM,x <zN,z € R],> z; < 1}, ue RY. (2.12)
j=1

Note the change in the notation: now the feasible set is denoted by L (u| N, .S).
Figure 3 depicts the situation of the same example as above. Finally, in the case
of variable-return to scale, feasible set denoted by L (u|V,.S) is given as

=1

J
L(u|V,S)= {x|ugzM,xgzN,zeRi,sz=1}, ue RY. (2.13)

Figure 4 depicts the situation where there are only one each of input and output
and two firms. Note that the following is always true:

L(u|V,S)C L(u|N,S)C L(u|C,S). (2.14)

Define the efficiency measure of a firm whose input and output vectors are given
as x and u respectively, denoted by F, as the following:

F = arg m/\in)\x (2.15)
s.t. Ax € L(u). (2.16)

Note that F' can take different values depending upon the assumption on the
returns to scale. As shown in Figure 5, it is straightforward to see that

F|C,S < F|V,8. (2.17)

Efficiency loss due to the return-to-scale assumption, denoted by 5, is therefore
always smaller than or equal to unity:

F|C,S
F|\v,S

S = <1, (2.18)
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Argument above is all referred to as the input-based productivity measure.
Similar logic can be developed from the output point of view. That is to compare
the level of output, given the input vector. This is referred to as the output-
based productivity measure. Both of these input and output-based productivity
measures are direct measurement. Alternative productivity measures are indirect
ones, in the sense that they do not control output or input, but instead, controls
total revenue or costs.

The first of the indirect measures uses the revenue, instead of the output vector,
to define the feasible input set. This set is denoted by IL (r/R) where r is the
output-price vector and R is the target revenue. There can be multiple output
vectors that generate the same level of revenue, given the output-price vector.
Therefore, IL always contains L as its subset:

L(u) C IL(r/R(w)). (2.19)

This implies that the efficiency measured by using the L (u) is higher than that
from IL (r/R (u)): this difference captures the inefficiency in the choice of output
combination.

Similar logic can be developed by controlling the cost, instead of the input
vector. Doing this will capture the inefficiency arising from the allocation of
inputs.

3. Endogenous-Weight TFP Method

3.1. Motivation

As we have seen above, TFP method uses revenue (or price) data to index the
input and output index. DEA method does not have this high data requirement
as it uses physical data only; however, it is extremely sensitive to outliers and
typically, and it has multiple “best performers.”

To surpass this dilemma, this section proposes another alternative method
that does not require price or revenue data, and at the same time it does not have
the sensitivity that DEA method has. The fundamental idea is to measure the
production transformation function where there are multiple inputs and outputs.
The specified model is very flexible in the sense that it endogenously determines
the parameters such as returns to scale and elasticities of substitutions among
inputs and outputs.

Since the method does not incorporate the price data, what it measures pri-
mary is the technical efficiency but not the price (or, allocation) efficiency. Once
you obtain the price data, however, it is not a difficult task to measure the price
efficiency using the measured production function.

3.2. Specification and Estimation

Suppose there are T' observations. Let X;; through X,,; and Y7, through Y,
be the tth observation on m inputs and n outputs respectively, both measured in



physical units. Define z;; and y;,; as standardized input and output for the tth
observation as follows:?

InX;; —InX; .
x’i,t = eXp<u>, Z:l,...’m; t:l,...’T, (31)
Sn X;
InY;, — InY, .
y’i,t = exp(M)) Z:l,...,n; t:l,...’T, (32)
Sny;

where si x, (Smy;) is the sample standard deviation of In X; (InY;), and tilde (~)
means the geometric mean, i.e.,

T
nX;, = lzpnxm, i=1,---,m, (3.3)
Tt:l
- 1L
InY, = —Zln}/;t, i=1,---,n. (3.4)
Tt:l

In what follows, subscript t is abreviated.
Multiple-input-multiple-output production function is defined as

f(xlv'”vxmayla"'ayn)zo (35)

This equation defines m+n — 1 dimensional (hyper-)surface in m + n dimensional
space. In other words, to each input vector z, a set of feasible production vectors
(i.e., production-possibility frontier) corresponds. For simplicity, the production
function is assumed to possess the separability:?

f(g(xlv"'7xm)7y17"'7y7l):O' (36>

This means that there exist isoquants, at any point of which the corresponding
production-possibility frontier is identical.

2The followin alternative vields Z; and ; being unity:
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3This separability assumption is solely for the simplicity. Without this assumption, (3.5) is
estimated directly, after specifying some appropreate functional form.



Specify the production transformation function as a CES function as the fol-

lowing:

OWlng 1 n 1/v 1 m 5/p
- 7 =Al— P . 3.7
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This CES specification is a variant of the standard specification, and is deliberately
chosen to obtain a unique set of parameter estimates in the actual estimation.*
Note that v and p respectively represent the elasticity of substitution among out-
puts and inputs, and ¢ captures the return to scale. In order to explain the
idiosyncracy of each entity, after taking the log of (3.7), a disturbance term wu is

added:
—111( Z%) 111A+—1n< Zx) (3.8)

Assume that the disturbance term w has its expected value being zero.’ Then the
estimated parameters should minimize the sum of squared errors:

AIE}I}I)F Z[ (%iyi) 111A——1n< Z:Jc)] (3.9)

Corresponding first-order conditions are as follows:
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4Another possible specification would be the translog production function, however such pro-
duction function is not valid for entire domain of inputs. See Bendt and Christensen [4] for details.
"Maximum-likelihood method requires a stronger assumption that the ratio of input and output
indices follows the lognormal distribution (see, for example, Aitchison and Brown [2] for details):

(1271 7)1/7
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Though this is a sufficient condition, it is not necessary for our method. Another alternative is
to assume a combination of symmetric and truncated distributions. The asymmetry comes from
the idea that the error distribution is a combination of white noise and firm-specific inefficiency,
which can only take a negative value on output. See Aigner, Lovell, and Schmidt [1] for details.
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Solving the above first-order conditions can give the estimates, however, it is
analytically difficult. The actual estimation therefore utilizes so-called “steepest-
descent” method. After specifying the initial values of parameters to some appro-
priate level, search proceeds by using the above first-order conditions as a gradient
of the objective function. Typically, second-order conditions (or, Hessian) are used
to determine the step size: however, this may decrease the computation speed and
thus greatly increase the execution time. To avoid this, it is better to set the step
size manually, and variably.

3.3. Efficiency Measurement
3.3.1. Output-Oriented Efficiency Measure

Define the output-oriented production efficiency denoted by eo as the following:
W LA
(% >ic1 v, )
o N6 /D
A (% i :ch) /p

€o = (314)

where hat (7) denotes the estimate of a parameter. The numerator of the right-
hand side in (3.14) gives the actual output index; the denominator in turn gives
the expected (or, “average”) output index given the input vector. That is, eo
is the ratio of the distances from the origin to the PPF at the expected output
index and the actual output vector. The ratio ep being greater than unity implies
efficiency while ep < 1 implies inefficiency.

3.3.2. Input-Oriented Efficiency Measure

Define the input-oriented production efficiency denoted by e; as the ratio of the
distances from the origin to the isoquant at the expected input index and the
actual input vector, where the expected input index is simply

1 A\
(5;@ . (3.15)

This implies that ey satisfies
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which further implies that
N\ 1/69
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Again, e; being greater than unity implies efficiency while e; < 1 implies ineffi-
ciency.

(3.17)
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3.4. Price/Allocation Efficiency Measurement

The previous subsections have shown that the endogenous-weight TFP method
enables the measurement of production efficiency without referring to the price
data. However, once the input-price data are obtained, it is relatively straight-
forward to find price efficiency using the estimated production function. Figure 6
illustrates the idea in two-input case. In Figure 6, a point A represents the input
combination for one observation; the isoquant Y, is the output level obtained by
using the estimated parameters and output data for this observation in the left-
hand side of (3.7); Y7 represents the technically efficient (but not in price) output
level expressed in terms of the input index obtained by using the estimated para-
meters and input data z;’s in the right-hand side of (3.7); and Y, represents the
efficient (both in terms of technology and price) output level which is obtained as
the solution of the following maximization problem:

. S 10
max [of + -+ + af (3.18)
s.t. pPX = pX;
where x ={z1, -, Zwm}, P = {p1, -, p2}, and x; is the actual input vector of
the ith observation. The difference (or ratio) between Y, and Y; gives the tech-
nical (in)efficiency; the difference (or ratio) between Y, and Y; gives the price
(in)efficiency; and the difference (or ratio) between Y, and Y, gives the overall

(in)efficiency. Similar logic can be applied to the outputs to obtain the allocation
(in)efficiency.

4. Monte-Carlo Experiment

4.1. Experiment 1: the Two-Input-Two-Output Case
4.1.1. Data Generation

By using the equation (3.7), a sample of 100 observations on two inputs and two
outputs is generated under a parameter setting of

A = V2 (4.1)
§ =1 (4.2)
v o= 2 (4.3)
p = 1, (4.4)



while the probability distribution of the error is set as logit function:
1 1 § 1 m elO(Z*l)
Pr{|=In(— yZ) —InA——In (— xf) <Z> — (4.5)
(B35 Ao

T 1+ el0Z D
where n = m = 2. Observations are sorted in terms of the error size which is
interpreted as the efficiency, and are listed in Table 1. Note that the observation
name reflects its “true” ranking.

4.1.2. Estimation Results

The estimation results of this Monte-Carlo experiment is as follows:

A = 1518 (0.059) (4.6)
6 = 1.075 (0.064) (4.7)
4 = 2143 (0.325) (4.8)
p 0.992 (0.108). (4.9)

Bootstrapping vields the standard deviations that are given in brackets above.

By using these parameter estimates, efficiency measures are calculated and
presented in Table 2. Figure 7 shows the scatter diagram between the true and
measured efficiency of these 100 observations. The correlation coefficient between
the two is calculated as .977. By sorting observations according to this mea-
sured efficiency, the measured ranking is obtained and it is depicted against the
true ranking in Figure 8. The rank correlation, which is the Spearman’s order-
correlation coefficient, is calculated to be .967.

4.2. Experiment 2: the Three-Input-Three-Output Case
4.2.1. Data Generation

The previous experiment has resulted in very high correlations both in efficiency
itself and the ranking. One reason behind this result is that the data-generating
mechanism is indeed the model specification that is used in estimation. Now,
in order to verify the flexibility of this measurement methodology, an alternative
specification, namely, non- CES-type functions is used in data generation. To
have heterogeneity in the elasticity of substitution among inputs and outputs,
more than two variables are necessary for each of input and output sides.

A sample of 50 observations on three inputs and three outputs is generated
under a parameter setting of

1 1
%(yf+y§+y§) :g <x1+x§+x§> (4.10)

while the probability distribution of the error is again set as logit function. The
generated data set is sorted in terms of efficiency, and listed in Table 3. Again,
the observation name reflects its “true” ranking.

5See, for example, Efron [6] for the general explanation of the bootstrapping methods.
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4.2.2. Estimation Results

There is not much meaning in listing the parameter estimates than using them
in calculating the measured efficiency and ranking, as the estimated model (in-
tentionally) mis-specifies the true data-generating mechanism. By using these
parameter estimates, efficiency measures are calculated and presented in Table
4. Figure 9 shows the scatter diagram between the true and measured efficiency
of these 50 observations, while Figure 10 is the same diagram after taking log
of efficiency. The efficiency correlation coefficient is calculated as .939, and the
Spearman’s rank correlation coefficient is calculated to be .847. Figure 11 depicts
the scatter diagram of true and measured rankings.

5. Conclusions

The endogenous-weight TFP method has the advantage of both index-TFP and
DEA methods: it is not sensitive to outliers, and at the same time, data require-
ment is not strict, or in other words, there is no arbitrariness (or approximation)
in the weight. Moreover, it gives a unique “best performer” unlike DEA-based
methods.

Since all these methods define efficiency as the ratio between output and input
indices, there may be a heteroschedasticity problem. That is, for smaller firms, ef-
ficiency measures may vary greatly, depending on the subtle difference in absolute
level of output/input. This means, for smaller firms, the efficiency measures are
more sensitive to the measurement error of the same magnitude than that for
larger firms.

There are some factors that are beyond control of the airport authority. In or-
der to better estimate the efficiency, after obtaining the gross TFP measurements,
it should be regressed against a set of variables such as weather factor, propor-
tion of government ownership, and so on, just as described in the two-step TFP
method. Also, the airport performance is not only determined through the supply-
side factors, but also demand factors as well. Incorporating such aspects into the
model is desirable, however, at the same time this will face the data-availability
problem.

As the results of Monte-Carlo experiments show, the rank correlation was
lower in the second case where the true relationship is not CES. To better capture
the true ranking, the model should be extended to accommodate non-CES type
production functions. This is left for the future work.
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