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Measuring Market Power in a Dynamic Oligopoly Model: 

The Dallas-Forth Worth Milk Market Case 
 

Donghun Kim 
Assistant Professor, International Development Program, Graduate School of 

International Relations, International University of Japan 

 
I. Introduction 
Measuring the degree of competition in oligopolistic markets and finding the underlying 

determinants of such competition are key activities in empirical industrial organization. 

Earlier studies focused on estimating conduct parameters that distinguish collusive 

behaviors from non-collusive behaviors, using contemporary observations of outputs, 

costs, and prices. The literature on measuring oligopolistic conduct follows from original 

research by Iwata (1974), Gallop and Roberts (1979), and Appelbaum (1982).1 The 

static contemporaneous conduct parameter is designed to estimate the level of market 

competition in a one-shot game that is repeated over time.2 

 As the problem of repeated oligopoly interaction has received greater attention, 

the estimation of time-varying conduct parameters that are truly dynamic has become an 

issue. Green and Porter (1984) predict a procyclical behavior pattern for markups 

because of price reversion during a period of low demand. Hence the conduct parameter 

changes from collusive value to competitive value when there is an unanticipated 

negative demand shock. Meanwhile, Rotemberg and Saloner (1986) predict that prices 

and markups are counter-cyclical. The incentive to deviate from collusive agreements is 

greater when demand is high, so the optimal price decreases during a boom to prevent a 

deviation from the collusion in this model. Hence the conduct parameter will decrease 

                                                   
1 Other examples of studies estimating static conduct parameters include Brander and Zhang (1990), 
Graddy (1995), and Berg and Kim (1994)—analyzing the U.S. airline industry, the Fulton fish market in 
the U.S., and the Norwegian banking sector, respectively. 
2 Other methods for estimating market power are found in Hall (1988) and Panza-Ross (1987). See Hyde 
and Perloff (1995) for a comparison of various methods. Another approach in NEIO is to estimate the 
demand and pricing relationship under specific assumptions of market competition (Bresnahan, 1987). 
This approach has been used for differentiated product markets with price competition. See, for example, 
BLP (1995) and Nevo (2001). 
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when demand is high. 

 Empirical studies that estimate time-varying conduct include Bresnahan (1987), 

Brandar and Zhang (1993), and Gallet and Schroeter (1995). Bresnahan (1987) analyzes 

changes in firm conduct in the mid-1950s for the U.S automobile industry. He finds that, 

in the industry, the collusive solution is sustained in 1954 and in 1956 while the 

competitive solution holds in 1955. Brandar and Zhang (1993) estimate a 

regime-switching model that is derived from Green and Porter (1984) for the U.S. airline 

industry during the 1984-1988 period. They find that Bertrand, Cournot, or cartel 

one-shot static games are rejected and the reversion from collusion to Cournot behavior 

is strongly supported. Gallet and Schroeter (1995) estimate a countercyclical 

regime-switching model in favor of the Rotemberg-Woodford model for the 1930’s U.S. 

rayon industry. Bresnahan (1987) estimates for a differentiated product market with 

price competition while Brandar and Zhang (1993), and Gallet and Schoreter (1995) 

estimate for homogeneous product markets with quantity setting. 

 Our goal in this paper is to analyze the cyclical behavior of firm conduct in the 

Dallas-Forth Worth milk market in the U.S. and evaluate bias in static market-power 

measures in a unified manner by deriving and estimating a dynamic first-order condition 

for profit maximization. To accomplish this, we specify a structural model that is based 

on a dynamic supergame model for firm-level conduct. In the model, firms sell 

differentiated products and choose prices so as to maximize their profits, comparing the 

benefit of a deviation from collusion with the expected future loss from the deviation. As 

in Rotemberg and Saloner (1986) and Green and Porter (1984), there are cyclical 

patterns of prices or markups in our model as firm conduct changes over time. We 

assume, however, that there remains a time-invariant conduct parameter that measures 

an average level of market power in the dynamic model. We call this a ‘core conduct 

parameter.’ We then model a dynamic conduct parameter as a function of the core 

conduct parameter, demand shocks, and cost shocks. The demand shocks and cost 

shocks cause the dynamic conduct parameter to deviate from the core conduct parameter. 

Hence we combine the concept of estimating an average level of collusiveness with that 

of estimating time-varying firm behavior in a single model. For example, if firms behave 
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as posited by Rotemberg and Saloner (1986), they will impose cartel prices when no 

incentive compatibility condition is binding and will charge prices lower than cartel 

prices when an incentive compatibility condition binds. Hence the conduct parameter 

will be higher when no incentive compatibility condition is binding than when such a 

condition is binding. But there still exists an average level of market power, which is 

consistently sustained if firms follow a dynamic tacit collusion game. We also specify an 

empirical model based on static profit maximization to compare the conduct parameter 

estimates from a static model with the core conduct parameter and to illustrate bias in 

the market-power measure in a static model. Corts (1995) suggests that the conduct 

parameter captures the marginal response of the margins to demand shocks and that it 

can misrepresent the level of market power if firm behavior in a market follows a 

dynamic oligopoly game. In this paper, we relate the bias in the measurement of the 

conduct parameter to costs and demand shocks which affect the incentive compatibility 

constraint, and show that the omission of the costs and demand shock in the 

specification of an econometric model can generate the bias. 

Our data consists of supermarket-level prices, quantities, and cost data in the 

Dallas-Forth Worth area of the U.S. The data is monthly, for the period of March 1996 to 

July 2000. It contains five supermarkets that cover 73% of the total milk market in the 

area. Supermarkets compete with one another constantly and this may provide an 

incentive for tacit collusion. We construct a panel data set by combining the individual 

supermarket data. 

 We find that the empirical results for the Dallas-Forth Worth milk market are 

consistent with the prediction of a dynamic supergame that the conduct parameter will 

be greater than it would be under Nash-Bertrand competition and lower than cartel level 

if firm conduct follows a dynamic oligopoly game. The current demand shock relative to 

expected future demand has a significant and negative effect on firm conduct. The 

dynamic conduct parameter is, therefore, less than the core conduct parameter during the 

boom. And expected future cost shock has a countercyclical effect on firm conduct. 

 Empirical results also demonstrate that the static conduct parameter 

underestimates the degree of collusion in the Dallas-Forth Worth milk market. 
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Econometrically, the static model is a restricted version of the full model that is derived 

from dynamic profit maximization. Tests reject the restriction. The static model 

underestimates the average conduct parameter of the dynamic model by more than 33% 

and its price-cost margins by 9%. This indicates that specifying and estimating static 

oligopoly models can misrepresent the degree of market power. We also specify different 

forms of marginal cost function to test the sensitivity of the result. The results of these 

tests show that the conduct parameter under a linear specification is slightly smaller than 

it is under a semi-log specification, but that it is a bit greater than it is under a quadratic 

specification. Meanwhile, in each specification, the conduct parameter of the static 

model has a tendency to underestimate the conduct parameter of the dynamic 

specification. 

 The paper is organized as follows. First, in Part II, we describe the Dallas-Forth 

Worth milk market and the corresponding data. In Part III, we specify a dynamic 

supergame model. We analyze empirical results in Part IV and present concluding 

comments in Part V.  

 

II. Market and Data 
The scanner data used in this analysis was obtained from Information Resources Inc 

(IRI). IRI collects retail grocery product sales and merchadising data from a national 

sample of 12,080 supermarkets with annual sales greater than 2 million dollars. The data 

is a census-enhanced database constructed from 100% of the representative key accounts 

stores and a sample technique to estimate the remaining stores in each region that do not 

report full sales data. Data is then grouped by market area defined by local county 

definitions. 

 Our data consists of supermarket-level prices, quantities, and cost data in the 

Dallas-Forth Worth area of the U.S. The market population is 4.7 million, with 1.7 

million households. The median household income is 44 thousand dollars. The median 

age is 33 and household size is 2.7 persons. The data come from five supermarkets that 

cover 73% of the total milk market in the area. The supermarkets include Albertsons, 

Kroger, Minyard, Win Dixie and Tom Thumb. The data is monthly, for the period of 
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March 1996 to July 2000. Table 1 shows the sample statistics. ip  is own price and jp  

is other firm’s price, which is a volume-weighted sum of the other firms’ prices. 

Income  is median income level in the market. tRawMilk , tyElectricit , tWage , and 

ttPackingCos  are monthly price indexes for raw milk, electricity, wages, and packing 

cost. tteInterestRa  is included to capture the effect of capital cost. The proxy for 

capital cost is the monthly prime interest rate. 

 

III. Specification of A Dynamic Supergame Model 
We assume that milk products are differentiated across supermarket chains. 

Supermarkets charge different prices and exhibit different merchandising activity for 

milk. Firm i’s profit function in a differentiated product market is: 

                      )),((),( jiijiiii ppqCppqp −=π  (1) 

Where iπ is a firm i’s profit, ip  is a firm i’s price, and jp  is a price for firm j. 

)),(( jii ppqC  is a firm i’s cost function. We assume that a firm’s marginal cost is 

constant but that it varies across firms and over time. Finally, we represents a firm i’s 

demand function, iq , as follows: 

 ijii ShiftersDemandfppq εααα ++⋅+⋅+= )(210         (2) 

Here iε  is an error term and iα ’s are parameters to be estimated. 

 We define a trigger strategy for a supergame such that each firm begins by 

charging cartel prices and continues to do so as long as all other players do the same. 

Otherwise firms revert to Nash-Bertrand prices following any defection and continue to 

play the Nash-Bertrand game forever.3 We assume that a firm observes prices for t=1, 

2,…, t-1 at time T. Each firm solves a dynamic profit maximization problem by 

comparing the benefit of a deviation from the collusion with the future loss caused by 

retaliation.4 We can then write a firm’s profit maximization condition as follows: 

                                                   
3 See Friedman (1971). This is his ‘grim trigger’ strategy. 
4 See Rothschild (1992) for the sustainability of collusion in differentiated duopolies when price is the 
strategic variable and Rothschild (1995) for the sustainability of collusion in differentiated product 
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Where ψ  is a Lagrange multiplier. The dynamic first-order condition can be written as: 
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In (5) the conduct will change depending on whether the incentive compatibility 

condition binds. But there is an average level of this time-varying conduct parameter, 

                                                                                                                                                      
markets when strategic variables can be switched. Deneckere (1983) shows that when products are good 
substitutes, collusion is better supported in price-setting games. 
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demand shocks and cost shocks because constraint binding and
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affected by them. We thus represent the dynamic conduct parameter as follows: 

    ),(* ttt wxG+= θθ        (8) 

Dynamic models predict that a firm’s dynamic behavior is influenced by contemporary 

demand levels, expected future demand, and expected future costs. See, for example, 

Borenstein and Shephard (1996). We therefore specify ),( tt wxG  as a function of these 

variables: 

   tttt ewx +⋅+⋅+= 21* ϕϕθθ    (9) 

Again, tx and tw represent demand shocks and cost shocks.  

The advantages of the specification in (9) are two-fold. First, we can test the relationship 

between the firm’s conduct and both demand shocks and cost shocks by specifying a 

time-varying conduct parameter.5 If tx has a negative sign, this implies countercyclical 

firm conduct and markup as in Rotemberg and Saloner (1986). If tx is positively 

associated with tθ , this implies procyclical firm conduct and markups as in Green and 

Porter (1984). 

Second, we can shed light on the source of bias that distinguishes the core conduct 

parameter *θ  in (5) and the static conduct parameter θ  in (6). Suppose that the true 

game is a dynamic supergame and that the conduct parameter is a constant. Then we 

must estimate *θ  in (5). But if we assume a static game wrongly, we are then going to 

estimate θ  in (6). This will produce a bias in the estimation of market power. What θ  

measures is not *θ  but *θ  plus a bias term. The bias term is a function of demand 

shock and cost shocks. In this case, market power will be underestimated or 

overestimated. Hence specification (9) is a way of estimating *θ  with a bias 

correction. 

 Thus the structural model to be estimated is: 

                                                   
5 See Bresnahan (1987), Brandar and Zhang (1993), and Gallet and Schroeter (1995) for time-varying 
conduct. 
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Firm i’s demand, iq , is a function of own price, ip , the other firm’s price, jp , a 

volume-weighted sum of the other firms’ prices, kMon , a monthly dummy to control for 

seasonality, iSup , firm-specific dummies, and Income , the median income level in the 

market.6 Equation (11) represents firm i’s pricing relationship and the specification in 

(12) is the dynamic conduct parameter embedded in Equation (11). The dynamic 

conduct parameter is a function of *θ , the core conduct parameter, tx , demand shock, 

and tw , cost shocks. To serve as a demand shock, tx , we include current industry output 

divided by expected future output. As a proxy for future output, industry output at t+1 is 

used. For the cost shock, tw , we use expected future cost rather than contemporary cost. 

The future cost shock is approximated by the raw milk price at t+1. If only static profit 

maximization matters, the parameters 1ϕ  and 2ϕ  should be equal to zero. Hence the 

static model is a restricted version of the full model (11). Therefore we can test to 

determine whether these restrictions are valid. We specify tx  and tw  in a mean 

deviation form so that the average of tθ  converges to *θ . We specify a firm’s 

marginal cost (13) as a function of the following factor prices and firm-specific 

dummies: tRawMilk , tyElectricit , tWage , and ttPackingCos  are monthly price 

                                                   
6 Among variables, income is yearly and others are monthly. 
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indexes for raw milk, electricity, wages, and packing cost. tteInterestRa  is included to 

capture the effect of capital cost. The proxy for capital cost is the monthly prime interest 

rate. These input prices are market level. To capture the firm-level cost, we include 

fixed-effects dummies for each supermarket, iSUP . The brand dummies represent the 

firm-specific production cost, which exhibits little variation over time (Nevo, 2001). 

itε , itv , te , and itδ  are error terms. We also specify different functional forms of 

marginal cost to test the sensitivity of the estimation of the conduct parameter. One is a 

semi-log linear form and the other is a quadratic form. Equation (14) represents the 

semi-log linear specification. 
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In Equation (14), the input prices are specified in log form. ik0  represents firm fixed 

effects and ik ’s are parameters on the input prices. itδ  is an error term. 
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Meanwhile, in Equation (15), i0ϖ represents firm fixed effects and iϖ ’s are parameters 

on the input prices. itς  is an error term. 

 

IV. Results 
We estimate the structural model using the Generalized Method of Moments. We first 

estimate the demand side parameters and, given the estimated demand surface, we then 

estimate the pricing relationship. We estimate the demand and pricing relationships 

separately primarily to compare the core conductor parameter with the static conduct 

parameter given the estimated demand function. An example of two-step estimation of a 
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structural model is found in Nevo (2001). Table 2 shows the estimated demand-side 

parameters. We use cost variables such as raw milk price, packing cost, wages, and 

interest rates as well as exogenous variables in the demand equation as instrumental 

variables to control for price endogeneity. The value of the GMM objective function 

indicates that we are unable to reject the model specification at 10%, 5%, and 1%, 

respectively. Critical values for )4(2χ  are 7.78, 9.49, and 13.28 for each significance 

level. The coefficients on prices are significant and have the expected signs. The size of 

the coefficient on own price is greater than that on other firms’ prices. This verifies that 

products are substitutes and strategic complements. The coefficient on own price implies 

that own-price elasticity is 1.509 and cross-price elasticity is 0.349. The elasticities are 

calculated at the mean in price and quantity. This implies that firm margin is around 66% 

under the assumption of Nash-Bertrand competition, because margin is simply the 

inverse of own-price elasticity. Price-cost margin can be defined as 

1][/][ −⋅−=− ij
j

i
ii p

ppmcp ηθη  where iiη  is own-price elasticity and ijη  is 

cross-price elasticity. θ  represents the conduct parameter. Under Nash-Bertrand 

competition, price-cost margin is equal to zero. Hence price-cost margin is simply the 

inverse of own-price elasticity. 

 Table 3 presents the estimation results for the fully dynamic pricing relationship. 

The instrumental variables for this estimation include monthly dummies, income, lagged 

quantity and the other firm’s price, and exogenous variables. We are unable to reject the 

full model at the 5% significance level using the 2χ test. The critical value for )13(2χ  is 

22.36. In Table 3, raw milk price and wage are positive and significant among factor 

prices. On the other hand, packing cost has an unexpected sign but it is insignificant. The 

coefficient on interest is positive and insignificant. Roller and Sickles (2000) 

demonstrate that dropping capital cost resulted in bias in conduct parameter estimation 

for the European airline industry. The milk market might not, however, be as capital 

intensive as the airline industry, as the insignificant statistical result indicates. 

Meanwhile, the coefficients on the firm fixed effects, which capture the time-invariant 
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firm-specific marginal costs, are positive and significant. 

 The estimated core conduct parameter indicates that its size is 0.854 and it is 

significant at 1%. Hence the average level of market power is greater than the level of 

Nash-Bertrand competition and lower than the level of the cartel solution. This average 

level of market power also is greater than what is captured in the static model. In the 

static model the conduct parameter is estimated as 0.567 in Table 4. Hence the static 

model underestimates the average conduct parameter of the dynamic model by more 

than 33% and its price-cost margin by 9%.7 This implies that there can be a significant 

bias in measuring market power in a static model if actual firm behavior does not follow 

a one-shot static game. 

 The demand shocks and cost shocks have negative and significant effects on firm 

conduct. They are significant at the 5% level. The null hypothesis, that the parameters 

are equal to zero jointly, is also rejected. The test statistic, )2(2χ , is 15.34 and its critical 

value is 9.21 at the 1% significance level. We can test the validity of the restriction using 

the values of the GMM objective function of the full model and the restricted static 

model. 34.1537.1371.28)13()15( 22 =−=− χχ . This test is attributed to Newey and 

West (1987).8 This demonstrates that the dynamic game matters in the Dallas-Forth 

Worth milk market. This result also indicates that the dynamic conduct parameter, tθ , is 

countercyclical to current demand shock and expected future cost increase. Hence 

market prices are lower than cartel prices when current demand is higher than expected 

future demand and when firms expect future cost to increase. If expected future cost 

increases, then the expected loss from the deviation will decrease. This provides firms 

with an incentive to deviate from full collusion. The collusive market price must be 

lowered to prevent the deviation. The role of future cost is similar to that of current 

demand shock relative to future demand. The results also demonstrate that the static 

conduct parameter can underestimate market power when current demand relative to 

future demand increases and firms expect future cost to increase. 

                                                   
7 See Table 5. 
8 Refer also to Greene (2003, p 549). 
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 Table 6 compares the conduct parameters estimated under different specifications 

of marginal cost function. The results show that the conduct parameter under the linear 

specification is slightly smaller than it is under the semi-log specification, while it is a 

bit greater here than it is under the quadratic specification. Meanwhile, in each 

specification, the conduct parameter of the static model has a tendency to underestimate 

the conduct parameter of the dynamic specification. 

 

V. Conclusion 

In this paper we derive a structural model based on a dynamic oligopoly game and 

estimate market power for the Dallas-Forth Worth milk market in the U.S. In particular, 

we analyze the cyclical behavior of firm conduct and evaluate bias in static 

market-power measures in a unified manner by deriving and estimating a dynamic 

first-order condition for profit maximization. For these purposes, we collect 

supermarket-level prices, quantities, and cost data for the sample period of March 1996 

to February 1999. Supermarkets compete with one another constantly and this may 

provide an incentive for tacit collusion. 

 The empirical results indicate that we are unable to reject the demand and pricing 

relationship specification. The coefficients of the demand function verify that milk 

products are substitutes and strategic complements. The estimated own-price elasticity is 

about 1.5. This suggests that firms’ margin is around 66% under the assumption of 

Nash-Bertrand competition. We also find that the results for the Dallas-Forth Worth milk 

market are consistent with what dynamic oligopoly models predict. The estimated 

conduct parameter is greater than the Nash-Bertrand level and less than the cartel 

solution. And demand shock and future cost shock have countercyclical effects on 

current firm conduct. We also illuminate the source of bias in measuring market power 

using a static model. The static model is a restricted version of the full model that is 

derived from dynamic profit maximization. Tests reject the restriction. The static model 

underestimates the average conduct parameter of the dynamic model by more than 33% 

and its price-cost margins by 9%. This result demonstrates that fitting data into an 
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econometric model in an arbitrary manner can cause a misinterpretation of market power. 

We also find that the conduct parameter under a linear specification is slightly smaller 

than it is under a semi-log specification, but that it is a bit greater than it is under a 

quadratic specification. Meanwhile, in each specification, the conduct parameter of the 

static model has a tendency to underestimate the conduct parameter of the dynamic 

specification. 
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Table 1) Sample statistics 

 
Variable Mean Std Dev Min Max 

ip ( $/gallon) 3.055 0.293 2.465 3.870 

jp ($/gallon) 3.051 0.249 2.599 3.703 

iq ( million gallon) 0.648 0.213 0.318 1.063 

tRateInterest (%) 8.308 0.234 7.750 8.500 

tRawMilk ($/gallon) 1.449 0.143 1.215 1.787 

tyElectricit ($/hour) 4.015 0.116 3.700 4.200 

tWage ($/hour) 11.755 0.339 10.980 12.300 

ttPackingCos (price index/100) 1.165 0.032 1.132 1.184 
Median Income (ten thousand $) 4.168 0.127 3.996 4.459 
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Table 2) Demand Side parameters 

 
Variables Parameter Standard error 

ip  -0.351         0.041* 

jp  0.082 0.032** 

1Mon  -0.025  0.013*** 

2Mon  0.002  0.014 

3Mon  -0.022 0.011** 

4Mon  -0.032         0.011* 

5Mon  -0.038         0.014* 

6Mon  -0.027 0.012** 

7Mon  -0.023 0.011** 

8Mon  0.005         0.013 

9Mon  -0.005         0.013 

10Mon  -0.009         0.012 

11Mon  -0.015         0.010 

1Sup  0.701         0.088* 

2Sup  0.409         0.085* 

3Sup  0.256         0.088* 

4Sup  0.064         0.087 

5Sup  0.389         0.110* 

Median Income 0.058 0.022* 

GMM Objective: )4(2χ   0.407 - 

Note) *: Significant at 1%; **: Significant at 5%; ***: Significant at 10%.
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Table 3) Parameters in the pricing relationship (full Model) 

Variables Parameter Standard error 
Marginal Cost   
 teInterestRa  0.153         0.169 
 RawMilk  0.979 0.291* 
 Wage  0.123   0.067*** 
 yElectricit  0.192 0.188 
 tPackingCos  -0.107 0.252 

 1Sup  3.869   2.317*** 

 2Sup  6.028  2.449** 

 3Sup  7.512 2.570* 

 4Sup  8.887 2.721* 

 5Sup  7.661 2.551* 

Conduct Parameter ( )tθ    

*θ  0.854        0.117* 

tx  -0.691 0.313** 

tw  -0.271 0.119** 

GMM objective: )13(2χ  13.368 - 

Note) *: Significant at 1%; **: Significant at 5%; ***: Significant at 10% 
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Table 4) Parameters in the pricing relationship (Static Model) 
 
Variables Parameter Standard error 
Marginal Cost   
 teInterestRa  0.329         0.267 
 RawMilk  1.187 0.387* 
 Wage  0.139  0.057** 
 yElectricit  0.295 0.241 
 tPackingCos  -0.112 0.170 

 1Sup  2.375 1.967 

 2Sup  4.085  1.962** 

 3Sup  5.241 1.978* 

 4Sup  6.289 2.014* 

 5Sup  5.413 1.972* 

Conduct Parameter   
       θ  0.567 0.081* 

GMM objective: )15(2χ  28.712 - 

Note) *: Significant at 1%; **: Significant at 5%; ***: Significant at 10%
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Table 5) Firm conduct and implied margins 

 

Conduct     Conduct parameter Margins 

Static conduct Model 0.567 76% 

Dynamic conduct Model 0.854 83% 
 

 

 

Table 6) Marginal Cost Functions and Conduct Parameter 
 

The shape of marginal 
cost function 

Dynamic Model Static Model 

Liner 0.812 0.604 

Semi log linear 0.861 0.623 

Quadratic function 0.684 0.442 
 


