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1 Introduction

The problems of controlling invasive species have been increasingly common, as every part

of the world is intertwined each other in a globalized world and there is no way to perfectly

prevent potential entries in such circumstances (see, e.g., Perrings, Williamson, and Dalmaz-

zone (2000) and Pimentel, Zuniga, and Morrison (2005) for general discussions). What we

can do best for this problem includes (i) to take countermeasure against pre-invasion and (ii)

to manage an established invasive species as a consequence of post-invasion, many of which

cause serious social damage on indigenous ecosystem and agriculture. The topic addressed

in this paper is concerned with the latter: how to manage the established invasive species,

especially focusing on analysis of the optimal strategies of removals on invasive species in

the presence of uncertainty.

Rational decisions on invasive species management are uneasy. The government author-

ities must determine whether to aim at eradication as well as how to manage the invasive

species in eternity if the option of eradication is abandoned or infeasible. If controlling costs

are not taken into account and eradication is feasible, there is no question that eradication

is the first best for a society. In reality, however, it is empirically shown that any policy

aiming at eradication can be prohibitively expensive when catchability rapidly declines as

the existing invasive species stock becomes less and less (see, e.g., Myers, Savoie, and van

Randen (1998), Bomford and O’Brien (1995), and Simberloff (2002)).1 This is the first is-

sue related to “stock-dependent catchability,” which plagues the decisions of management

practices. Our previous work of Kotani, Kakinaka, and Matsuda (2006) focuses on this issue.

To make matters worse, there is another important factor that makes the decision more

complex. Management practices are accompanied with various stochasticity, such as “growth

uncertainty” and “measurement error.” In the field of renewable resource economics, it is

well-known that growth uncertainty does not generally affect the qualitative feature of the

1In these review papers, there is an anecdote that killing the first 99% of a target population can cost
less than eliminating the last 1%.
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optimal policy, especially in a fishery model, if the current stock is accurately known (Reed

(1979)). However, several authors point out that in more realistic settings, the decision of

management practices must be made in the informational absence of current states. Indeed,

such factors could fundamentally affect the optimal programs of renewable resource man-

agement (see, e.g., Clark and Kirkwood (1986), Roughgarden and Smith (1996), and Loehle

(2006)). Considering the context of invasive species management, such a rule of thumbs

equivalently applies. Thus, it is valuable to analyze the optimal strategy as well as the

values of the management program under various uncertainties. This is the second issue,

related to “stochasticity,” which we examine in the present paper.

Several previous researches examine the optimal control of invasive species in economic

dynamic models in which the objective of a society is to minimize the long-run social cost.

Olson and Roy (2002) theoretically develop a discrete-time dynamic model under a stochastic

invasion growth and study the optimal policy of eradication. Eisewerth and Johnson (2002)

develops a continuous-time optimal control model, and their focus is mainly on the long-run

equilibrium outcomes without analysis on the decision of eradication. Moreover, Eisewerth

and van Kooten (2002) make the assumption that the current stock is inaccurately known

and apply the fuzzy membership function in the invasive species controls. However, all of

the above works employ the assumption that the cost of removal operations is independent

of the stock size and do not consider the stock-dependent issue so that their analysis might

miss the point of when to eradicate.

Olson and Roy (2004) is a pioneering work that considers the issues of stock-dependent

removal costs and derives the conditions under which eradication or non-eradication can be

optimal in the deterministic setting. While their innovative model is built under very general

settings, they do not explicitly examine the implications of stock-dependent catchability so

that it might be difficult to connect their analytical results into real management practices.

To do that, Kotani, Kakinaka, and Matsuda (2006) focus on analyzing the policy impli-

cations of stock-dependent catchability through deriving the conditions for various optimal
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policies in the deterministic setting. More specifically, our previous work shows that if the

sensitivity of catchability is sufficiently high, eradication policy is never optimal and in ef-

fect the constant escapement policy with some interior level is optimal. In contrast, if the

sensitivity of catchability is sufficiently small, eradication policy could be optimal and there

may exist a threshold of the initial stock (called a Skiba point) which differentiates optimal

actions between immediate eradication and giving-up without controls. If the sensitivity of

catchability takes some intermediate values, more complex policies would be optimal.

Building upon Kotani, Kakinaka, and Matsuda (2006), the aim of this paper is to ana-

lyze a stochastic model of the invasive species management in which the decision of controls

must be made when the pertinent stock is inaccurately known in addition to growth un-

certainty. To the best of our knowledge, all previous analyses lack at least an issue of

either “stock-dependent catchability” or “stochasticity.” In addition, most of them do not

carefully examine the impacts of uncertainty in both cases where (i) eradication and (ii)

non-eradication are set as goals. Given this state of affairs, our analysis seeks to answer the

following questions: (i) how should we adapt the optimal decision of eradication and non-

eradication to uncertainties?; and (ii) how does the value of optimal management programs

vary with uncertainties?

The specification of stock-dependent catchability is adopted following Reed (1979), Clark

(1990), and Kotani, Kakinaka, and Matsuda (2006). The uncertainties we consider are (i)

growth uncertainty and (ii) stock measurement error, following the specification of Sethi,

Costello, Fisher, Hanemann, and Karp (2005), so that a Markovian process is assumed

throughout the analysis. Although we admit that there are other uncertainties such as

implementation uncertainty, we believe that the model setup in this paper is a valuable

starting point.

This paper is organized as follows. In the next section, we elaborate on the basic elements

of the model. The section is followed by the analysis of a stochastic model only with growth

uncertainty and presents how growth uncertainty affects the optimal decision rule. In the
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next section, measurement error is introduced in the model. We show how the interaction

between growth uncertainty and measurement error affects the optimal decision and discuss

various intuitions of the results. In our analyses, we concentrate on two cases: (i) the

non-eradication case where the optimal policy is in a class of interior constant escapement

rules in the deterministic setting, and (ii) the eradication case where the optimal policy

would be immediate eradication in the deterministic setting. We also attempt to provide an

explanation of how the value of optimal management programs varies with the uncertainties.

In the final section, we offer some discussions and conclusions.

2 The Model

We consider an infinite-period stochastic model of invasive species management, following a

deterministic version of the dynamic model of Kotani, Kakinaka, and Matsuda (2006). Our

model below is appropriate for setting up and solving a stochastic dynamic programming

problem with Markovian transitions. As studied in Sethi, Costello, Fisher, Hanemann, and

Karp (2005), we assume that there are two random variables capturing the uncertainties

in each period t: growth uncertainty and stock measurement error, which are represented

by Zg
t and Zm

t , respectively.2 The random variable Zg
t reflects uncontrollable environmental

variability, while the random variable, Zm
t , reflects potentially controllable error. These

variables are independent of each other and of period t. We assume that Zg
t and Zm

t are

respectively distributed over some finite intervals [ag, bg] and [am, bm] with the mean of unity,

where 0 < ak < 1 < bk < ∞, according to a common distribution function Φk, for k = g,m.

The society officials know the statistical distribution for each of these random variables.

The stock (population) of existing invasive species in period t is governed by the following

2Sethi, Costello, Fisher, Hanemann, and Karp (2005) examine three sources of uncertainty: (1) growth
uncertainty; (2) stock measurement error; and (3) inaccurate implementation of action. In this paper, we
pay attention to growth uncertainty and stock measurement error as sources of multiple uncertainty.
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state equation:

xt = Zg
t F (st−1), (1)

where F (st−1) is the expected or average reproduction function that gives the stock xt as a

function of the previous period escapement, st−1. We assume that F is differentiable and

strictly concave with F (0) = 0 and F ′(0) ∈ (1,∞) and that there exists an undisturbed

level of the stock of invasive species, τ > 0, with τ = F (τ) such that F (s) > s and

F ′(s) ≥ 0 if s ∈ (0, τ). This specification implies that the deterministic stock-recruitment

relationship as assumed in Clark (1990) holds in terms of conditional expectations, i.e.,

E(xt|st−1 = s) = F (s). We further assume that bgF (0) > 1 and limx→∞ agF ′(x) < 1.

The stock measurement, mt, in period t is given by the following:

mt = Zm
t xt. (2)

The society officials use only the current measurement when they form expectations. This

assumption requires that the current measurement is the only state variable for the dynamic

problem. We assume that the society officials ignore past measurements so that they con-

dition their decision on a single state variable.3 Furthermore, although actual data are not

sufficient to distinguish between a multiplicative and an additive stochastic term, we believe

that the chosen expression with multiplicative stochastic term is the most convenient since

it does not allow for negative values of the stock. Notice that if all the two random variables

are constant at unity, our dynamic problem becomes deterministic.

We assume that the social cost in each period consists of the social damage from the

escapement of invasive species and the cost associated with the removal operation. The

former cost in period t is given by D(st), where D is increasing in s. The latter cost in

3Sethi, Costello, Fisher, Hanemann, and Karp (2005) justify this assumption based on modeling choice and
practical considerations, although they admit that a decision rule could be dependent on past measurements
history, which may include some information about the current stock.
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period t is given by C(wt, xt), where wt is actual removal, and C is increasing in wt with

C(wt, xt) ≥ 0 for any wt and xt. The removal cost in each period depends not only on the

number of actual removal but also on the stock of existing invasive species in that period.

Specifically, given the stock at the beginning of period t, xt, and the total number of removals

during period t, wt, the total cost of removal operations during period t is described by:

C(wt, xt) =

∫ xt

xt−wt

c(q)dq, (3)

where c(x) represents the unit cost that is a function of the current stock x. This specification

implies that the feasibility of eradication depends on the functional form of the unit cost

function c(x). That is, for given stock x, the eradication is feasible if C(x, x) is finite, and

it is infeasible if C(x, x) is infinity. From the above, the payoff for the society in period t is

given by:

u(xt, wt) = −D(xt − wt)− C(wt, xt). (4)

For our explanatory purpose to connect our arguments into catchability, we consider the

unit cost function:

c(x) = kx−θ, (5)

where θ > 0 is the sensitivity of catchability with some constant k > 0. The implication of

the parameter θ is discussed by Reed (1979), Clark (1990), and Moxnes (2003) in the context

of harvesting management and by Kotani, Kakinaka, and Matsuda (2006) for invasive species

management. The value of xc(x) can be thought of as the cost associated with the realization

of a given per capita rate of removal mortality when the stock is at level x. Reed (1979)

states that in most harvesting problems, xc(x) can be expected to stay constant (Schaefer

function) or increase with an increase in stock size, although it is conceivable that it could
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decrease. The former case corresponds to the one of θ = 1 with the linearity of xc(x), and

the latter case corresponds to the one of θ ∈ (0, 1) with the concavity of xc(x). However,

the nature of operational costs for controlling invasive species is often different from that for

harvesting problems in that the sensitivity of catchability θ may be larger than unity (see,

e.g., Clark (1990)).

To analyze the optimal policy under multiple uncertainty, we consider a society which

extends over the following stages in each period. Given the escapement st−1 in the previous

period, the true stock xt is randomly determined according to the reproduction process (1).

The society officials do not know the true stock but obtain the measured stock mt, following

the stochastic process (2). Then, given mt, the society officials decide the target removal yt.

If yt is equal to or larger than xt, they may be able to remove all existing stock. If yt is less

than xt, they actually cut the target removal, but they never know whether to achieve the

target level of the escapement. The actual removal and the true escapement are represented

by wt = min{yt, xt} and st = xt − wt, respectively. Then, the next period t + 1 proceeds.

The society official maximizes the expected present value of the payoffs (minimizes the

present value of the payoff losses) by choosing a sequence of target removals {yt}∞t=0:

max
0≤yt

E

{
∞∑

t=0

ρtu(xt, wt)

}

s.t. xt = Zg
t F (st−1)

mt = Zm
t xt

wt = min{yt, xt}

st = xt − wt,

where ρ ∈ (0, 1) is the discount factor and E is the expectation operator. The Bellman

equation for this problem is:

vt(mt) = max
0≤yt

E{u(xt, wt) + ρvt+1(Z
m
t+1Z

g
t+1F (xt − wt))}, (6)
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where vt(mt) is the value function given the current stock measurement of existing invasive

species, mt. For a given stock measurement, a sequence of the optimal target removals is

the one that maximizes the expected present value of payoff over time.4

Before discussing our stochastic problem, we should mention some results of the deter-

ministic model in Kotani, Kakinaka, and Matsuda (2006). The optimal policy sequence can

drastically change, depending on the sensitivity of catchability in response to a change in

the stock size, as well as on the initial stock. If θ is relatively high, the constant escapement

policy with some interior target level is optimal. In contrast, if θ is relatively low, immediate

eradication could be optimal for any initial state.5 In the intermediate range, more complex

policies could be optimal. For comparison between the deterministic and stochastic models,

this study pays attention to the following two cases: (1) the non-eradication case with a rela-

tively large θ in which the constant escapement policy would be optimal in the deterministic

setting; and (2) the eradication case with a relatively small θ in which immediate eradication

policy could be optimal at least for any domain of stock level in the deterministic setting.

3 Growth Uncertainty

This section seeks to characterize how growth uncertainty in the reproduction function affects

the optimal policy without measurement error, i.e., Zm
t is constant at unity. The growth

uncertainty can be interpreted as environmental variability that influences the reproduction

of invasive species. To characterize the officials’ optimal policy in the stochastic dynamic

problem, we transform the payoff in period t during a decrease in the stock size from xt to

st = xt −wt into the form of u(xt, wt) = −[Q(xt −wt)−Q(xt)]−D(xt −wt), where Q(x) ≡
4See Sethi, Costello, Fisher, Hanemann, and Karp (2005) for concrete derivations of the conditional

density that is required in the Bellman equation.
5Kotani, Kakinaka, and Matsuda (2006) present that in the deterministic model, there could exist a

threshold of the initial stock which differentiates the optimal policy between immediate eradication and
giving-up without any control if θ is sufficiently low. It is also shown that immediate eradication could be
optimal for any initial state if θ is relatively low with some conditions. In the present paper, we focus on the
latter case to clarify the impact of the uncertainty. As will be explained in a later part, the introduction of
the uncertainty will cause the former case to emerge.
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∫ m

x
c(w)dw ∈ [0,∞] represents the operational cost of removing invasive species from the

stock level m to some stock level x. Notice that Q′(x) = −c(x) < 0 and Q′′(x) = −c′(x) > 0.

Using xt+1 = Zg
t F (st), we rewrite the objective function as:

E

{
∞∑

t=0

ρtu(xt, xt − st)

}
= Q(x0) + E

{
∞∑

t=0

ρtΓ(st, Z
g
t )

}
, (7)

where Γ(st, Z
g
t ) ≡ −Q(st) − D(st) + ρQ(Zg

t F (st)) represents the discounted growth in the

immediate value. We denote the expected discounted growth in the immediate value by:

g(s) =

∫ bg

ag

Γ(s, z)dΦg(z) = −Q(s)−D(s) + ρ

∫ bg

ag

Q(zF (s))dΦg(z). (8)

In general, the shape of the graph g(s) is highly dependent on its functional forms, c(s),

F (s) and D(s). The maximization of the expected total discounted payoff (or expected

present value (EPV)) is to find a sequence {yt} to maximize (7) subject to the state equation

xt+1 = Zg
t f(xt −min{yt, xt}) and the initial stock x0. Notice that the discounted growth in

the immediate value in the deterministic case corresponding to the function (8) is given by:

h(s) = −Q(s)−D(s) + ρQ(F (s)). (9)

This is a special case of the stochastic setting in that ag = bg = 1 in equation (8). The

deterministic model of Kotani, Kakinaka, and Matsuda (2006) shows that h is strictly convex

if θ is sufficiently low, and h is strictly concave if θ is sufficiently high. The shape of h is

crucial to determine the optimal policy in the deterministic case.

3.1 Non-Eradication Case

The examination in this subsection is on the non-eradication case where the sensitivity of

catchability is relatively large so that the optimal policy is in a class of interior constant

escapement rules in the deterministic setting. For our explanatory purpose to make com-
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parison between the deterministic and stochastic settings, we focus on a case where both g

and h are strictly concave and unimodal. This requires the condition that

g′(s) =

[
c(s)− ρ

∫ bg

ag

zc(zF (s))F ′(s)dΦg(z)

]
−D′(s)

is strictly decreasing in s over [0, m], where m = max{bgF (s)|bgF (s) ≥ s, s ≥ 0}.6 Let σ

denote the escapement level attaining the maximum of g(s), which is called the short-sighted

optimal escapement level. The unimodality condition requires σ is interior so that g′(σ) = 0

holds with σ ∈ (0, m).

In general, the unimodality of g is not enough to guarantee that σ is the optimal level

of escapement in the stochastic case. Similar to the discussions in the dynamic harvesting

models of Reed (1979), in order for the constant escapement policy with the target level σ to

be optimal, we need to make the additional assumption that σ is self-sustaining, i.e., zF (σ) ≥

σ for all z such that Φg(z) > 0, or the stock in the next period is required to be always larger

than the escapement in the current period.7 The next subsection analytically studies the

optimal policy when the short-sighted optimal escapement level σ is self-sustaining. Then,

the following subsection examines the case where σ is not self-sustaining. Since it is difficult

to derive analytical solutions in this case, we adopt numerical analysis for the characterization

6Notice that c(s) is the marginal increase in current cost associated with a unit removal at the escapement
level s, while ρ

∫ bg

ag zc(zF (s))F ′(s)dΦg(z) is the expected discounted present value of the marginal increase
in sustained future removal cost resulting from a unit increase in the escapement. Thus, the value of
B(s) ≡ c(s) − ρ

∫ bg

ag zc(zF (s))F ′(s)dΦg(z) could be regarded as the expected marginal benefit associated

with the unit escapement in current period. If ρ
∫ bg

ag zc(zF (s))F ′(s)dΦg(z) is relatively large compared to
c(s), then it is more costly to remove the stock in the future so that the policymakers should involve removal
action in the current period.

7Recall that Zg
t is distributed over some finite interval [ag, bg] with the mean of unity, where 0 < ag <

1 < bg < ∞, according to a common distribution function Φg. It then follows that there exist finite stock
levels, m = max{bgF (s)|bgF (s) ≥ s, s ≥ 0} and r = max{agF (s)|agF (s) ≥ s, s ≥ 0}, such that with
probability 1, the stock will eventually stay within the interval [r, m] and on which it will attain a stationary
probability distribution in the limit. Any escapement level s for which Prob{xt ≥ s|st−1 = s} = 1 is called
self-sustaining. This implies that any population level in the interval [0, r] is self-sustaining. In the dynamic
harvesting models, Reed (1979) shows that the constant escapement policy is optimal under some conditions,
and the level σ at which g(s) is maximized is lower-bound for the optimal level of escapement. He also states
that the optimal escapement level is σ if σ is self-sustaining, and the optimal level is greater than σ if σ is
not self-sustaining.
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of the optimal policy.

3.1.1 Self-Sustaining Short-Sighted Escapement

This subsection attempts to compare the optimal escapement level in the stochastic model

with that in the deterministic model, assuming that g and h are strictly concave and unimodal

with their interior maximum of σ and s̄, respectively, and that the self-sustainability of σ

is satisfied. In this situation, s̄ and σ are the optimal escapement level in the deterministic

and the stochastic cases, respectively. Differentiating g(s)− h(s) yields:

g′(s)− h′(s) = ρF ′(s)

[
c(F (s))−

∫ bg

ag

zc(zF (s))dΦg(z)

]
. (10)

Our specification implies that (R1) σ < s̄ if xc(x) is strictly convex; (R2) σ = s̄ if xc(x) is

linear; and (R3) σ > s̄ if xc(x) is strictly concave.8 In terms of the sensitivity of catchability

θ, (1) σ < s̄ if θ > 1; (2) σ = s̄ if θ = 1; and (3) σ > s̄ if θ ∈ (0, 1). These results are

consistent with those in the dynamic harvesting models of Reed (1979).

Reed (1979) states that in most harvesting problems, xc(x) is likely to stay constant

(θ = 1) or to increase with an increase in stock size (θ ∈ (0, 1)). Thus, he concludes that

if θ ∈ (0, 1), then growth uncertainty increases the optimal escapement level under the

condition that the concavity and the unimodality of g and h are met. However, on invasive

species management, the sensitivity of catchability θ could be larger than unity in some

situations. In addition, the deterministic model of Kotani, Kakinaka, and Matsuda (2006)

shows that h tends to be convex if θ is relatively small, and h tends to be concave if θ is

relatively large. This implies that for a relatively small θ, the optimal policy is not in a class

of constant escapement policy so that the above argument cannot be applied. In contrast,

for a relatively large θ, g and h are likely to be concave so that the above argument can be

applied if the property of self-sustaining is satisfied. Thus, the result (R3) seems implausible,

8Let the random variable Y be such that Y = ZgF (s). Then, it follows that
∫ bg

ag wc(wF (s))dΦg(w) =
E[Y c(Y )]/F (s). Applying Jensen’s inequality with F ′(s) > 0, it must hold that the value of g′(s)− h′(s) is
negative, zero, or positive for all s if sc(s) is strictly convex, linear, or strictly concave in s.
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while the result (R1) seems plausible in our invasive species problems. As a result, if θ is

relatively large with the property of self-sustainability, then the constant escapement policy

is optimal, and growth uncertainty causes the optimal level of escapement to decrease.

Given the previous results, we now detail how the degree of growth uncertainty affects

the optimal target level of the escapement on the condition that g and h are strictly concave

holding their maximum interior and self-sustaining properties. For simplicity, we assume

that Zg
t is uniformly distributed over the interval [1− zg, 1 + zg]. The parameter zg ∈ [0, 1)

could be interpreted as the degree of growth uncertainty. The case of zg = 0 corresponds to

the one of the deterministic case. Notice that our specification implies that only the result

(R1) is plausible. Notice also that when θ > 1, the absolute value of g′(s) − h′(s) < 0 is

increasing in zg, and the difference between σ and s̄ is increasing in zg. Thus, if θ is large

enough with the property of self-sustainability, then a higher degree of growth uncertainty

has a larger impact on the optimal level of the escapement and causes the optimal target

level of the escapement to decrease more. This could provide the possibility of a sharp

contrast to the result in harvesting models of Reed (1979) in terms of the direction of the

impact of growth uncertainty on the optimal escapement level. Reed (1979) emphasizes

that in most realistic harvesting cases (θ ∈ (0, 1]), the optimal escapement level is larger

under growth uncertainty than that in the deterministic setting. In contrast, on invasive

species management, the opposite impact might be plausible under the assumption that

self-sustainability of σ is met since θ could be large enough.

3.1.2 Non-Self-Sustaining Short-Sighted Escapement

The discussion in the previous subsection is based on a crucial assumption that the short-

sighted escapement level σ is self-sustaining so that it is the optimal level of the escapement.

Since this assumption is not always guaranteed, this subsection examines the optimal policy

when σ is not self-sustaining. In general, it is difficult to find the optimal policy analyti-

cally, and thus we illustrate the relation between growth uncertainty and the optimal policy
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through numerical analysis.9

For the sake of computation, we make the following two specific assumptions in terms of

functional forms. First, the social damage from invasive species is represented by the linear

quadratic form:

D(s) = a1s +
a2s

2

2
, (11)

where s denotes the escapement with a1 ≥ 0 and a2 > 0. The parameter a2 represents

the degree of convexity. Second, the reproduction process of invasive species follows the

conventional logistic curve:

F (s) = rs
(
1− s

K

)
+ s, (12)

where r > 0 is the intrinsic growth rate and K > 0 is the carrying capacity. The two func-

tional forms satisfy the assumptions specified in the previous sections and are also employed

by some other authors in the settings of invasive species management (see, e.g., Olson and

Roy (2004) and Eisewerth and Johnson (2002)).10

The value function iteration algorithms introduced in Judd (1998) are adopted to approx-

imate the value function v(m) as well as optimal policy function y∗(m) that are characterized

by the Bellman equation (6).11 This algorithm first involves the discretization of the state

space, and then iterates on the Bellman equation with an initial guess for the value function.

It is shown that by the contraction theorem, the Bellman equation does fix a unique value

function, v(m), and the iterative process converges to the true value function. Accordingly,

9The difficulty of analytical derivation on the optimal policy in this case is noted by Reed (1979).
10We evaluate the sensitivity of the qualitative results in response to changes in the model specifications

and parameter sets: some alternative reproduction functions of invasive species stock, F (s), (logistic and
Ricker forms) and some alternative parameter sets of social damage function, D(s), (a1 and a2 on linear
quadratic social damage function). In all of these cases, we make the sensitivity analysis by changing the
degrees of growth uncertainty as well as measurement error in the same way that we examine in this study.
We generally find that the optimal policy and the corresponding value function exhibit the same pattern as
the ones that will be presented in the later section.

11Matlab code is written for numerical solutions.
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a particular optimal policy y∗(m) is obtained.

For our baseline, we choose k = 250 for the unit cost function, c(x); a1 = 1 and a2 = 2 for

social damage function, D(s); r = 0.3 and K = 10 for the reproduction of invasive species,

F (s); and ρ = 0.95 for a social discount rate. We also set θ = 1.1 so that the sensitivity

of catchability is relatively large. In this case, the optimal policy in the deterministic case

is the constant escapement policy with the interior target level s̄ = 3.9. Given these values

and assumptions, we attempt to find the optimal policy based on each of three different

values of the degree of growth uncertainty; zg ∈ {0.25, 0.50, 0.75}, under each of which the

escapement level s̄ = 3.9 is not self-sustaining in the stochastic setting.

Figure 1 illustrates how the degree of growth uncertainty affects the optimal policy.

First, it is clear that the constant escapement policy is optimal as in the deterministic case.

This implies that the existence of growth uncertainty keeps the optimal policy to be in a

class of the constant escapement rule. Second, a rise in the degree of growth uncertainty

monotonically increases the optimal target level of the escapement. The intuition of this

result could be explained as follows. When the degree of growth uncertainty is relatively

large, the stock level in the next period is highly likely to be in a non-self-sustaining region

in that the stock level tends to be reduced from the current period to the next period with

some positive probability, even without any removal operations. This implies that a larger

degree of growth uncertainty causes the current removal to be less attractive for the society

officials. This is in sharp contrast to the result of the case where the optimal short-sighted

escapement level, σ, is self-sustaining in that the degree of growth uncertainty decreases the

optimal target level in the previous discussion.

The issues of self-sustaining and non-self-sustaining short-sighted escapement provide an

interesting conjecture on the feature of the optimal target level of escapement related to the

degree of growth uncertainty zg. When zg is small enough, σ may be self-sustaining so that

σ is the optimal target level of escapement, which is decreasing in zg. In contrast, when zg

is large enough, σ is unlikely to be self-sustaining so that it is not the optimal escapement
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level. In this case, the optimal target level of escapement is increasing in zg. These results

imply the possibility that the optimal target level of escapement could follow a U-shaped

track: as zg rises, the optimal target level of escapement decreases and then increases.

3.2 Eradication Case

This subsection examines how growth uncertainty affects the optimal policy when the corre-

sponding deterministic model could yield the optimal policy of immediate eradication for any

initial stock. This case may be corresponding to the one that social damage out of invasive

species is sufficiently large and the sensitivity of catchability is sufficiently small. In this case,

it is also difficult to find the optimal decision analytically, and thus we will approach this

case through numerical analysis, as in the previous discussion. As a benchmark, we newly

set θ = 0.5, keeping other parameters unchanged. The optimal policy of the corresponding

deterministic model yields immediate eradication for all level of the stock. Examining this

case generates a set of implications associated with the degree of growth uncertainty.

Similar to the previous discussion, we examine three different values of the degree of

growth uncertainty; zg ∈ {0.25, 0.50, 0.75}. The results are summarized in Figure 2, which

suggests that a rise in the degree of growth uncertainty affects the optimal policy. The intro-

duction of growth uncertainty yields a Skiba point of the initial stock, which separates the

optimal actions between immediate eradication and giving-up without any control. More-

over, as the degree of growth uncertainty rises, the Skiba point is monotonically getting

smaller and approaching to zero. We also confirm that when the degree of growth uncer-

tainty is large enough, say zg ≥ 1.0, the optimal policy finally come to be giving-up without

any control for any stock level.

The intuition behind this result is similar to that in the non-eradication case. When the

degree of growth uncertainty is relatively large, the stock level is highly likely to be in a

non-self-sustaining region, i.e., the invasive species stock is naturally likely to decline even

without any control. This implies that a larger degree of growth uncertainty causes the
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current removal to be less attractive for the society officials. Thus, waiting is optimal until

the stock level happens to become relatively small. We believe that this simple result is the

first to show such a qualitative feature of the shift of the Skiba point on the invasive species

management due to growth uncertainty.

4 Measurement Error and Growth Uncertainty

This section incorporates measurement error into the previous setup with growth uncertainty.

We adopt the same specifications of measurement error as in the stochastic model of Sethi,

Costello, Fisher, Hanemann, and Karp (2005), i.e., measurement error is Markovian; a signal

of true stock is in a multiplicative fashion; and Zm
t is uniformly distributed over the interval

[1−zm, 1+zm], where the parameter zm ∈ [0, 1) represents the degree of measurement error.

As in the previous section, we attempt to analyze the two cases: (i) the non-eradication case

and (ii) the eradication case, in order. In each case, two different values of the degree of

measurement error, zm ∈ {0.25, 0.50}, are examined, and the results are compared to the

cases in the absence of measurement error.

For the clarity of our results, two sets of figures are presented in each of the two cases.

Figures 3 and 4 are the non-eradication cases corresponding to θ = 1.1, and Figures 5 and

6 are the eradication cases corresponding to θ = 0.5. Figures 3 and 5 shows the base case

where the parameter set is the same as that in the previous section, while Figures 4 and 6

shows one of the results adopted from sensitivity analysis, which is denoted by ‘sensitivity

analysis’ in the caption of figures. The set-up of sensitivity analysis differs from the base case

in the parameter value of a2, which represents the degree of convexity in the social damage

function. Instead of a2 = 2 in the base case (Figures 3 and 5), we use the value of a2 = 1 in

the case of sensitivity analysis (Figures 4 and 6) so that the degree of convexity is weakened

compared to the base case. We can demonstrate our qualitative results more clearly by

showing the sensitivity analysis cases in tandem with the base cases. Some of our results
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are common to the previous work in stochastic fishery models, but we obtain new findings

which emanate from the interplays between measurement error and growth uncertainty.

4.1 Non-Eradication Case

The previous section has shown that in non-eradication cases, growth uncertainty does not

change the qualitative feature of the optimal policy from constant escapement rules, although

its target escapement level is affected. This subsection analyzes how measurement error

influences the optimal policy in non-eradication cases. Figures 3 and 4 represent the optimal

policies in the base case and sensitivity analysis case, respectively. Each of them consists of

six sub-figures.

At the left side in Figures 3 and 4, three sub-figures describe optimal policies in a situation

where the degree of measurement error is fixed at zm ∈ {0, 0.25, 0.5}, respectively. Each sub-

figure shows three optimal policies, each of which corresponds to some level of the degree

of growth uncertainty zg ∈ {0.25, 0.5, 0.75}. On the other hand, at the right side, three

sub-figures describe optimal policies in a situation where the degree of growth uncertainty

is fixed at zg ∈ {0.25, 0.5, 0.75}. Each sub-figure shows three optimal policies, each of which

corresponds to some level of the degree of measurement error zm ∈ {0, 0.25, 0.5}. Notice that

the target removal is taken as the vertical axis, and the measured stock as the horizontal axis.

In this way, it is easy to see how optimal removal actions should be adapted to uncertainty.

An interior constant escapement rule is described by the graph in which the target removal

is zero if the measured stock is below a certain level, otherwise it linearly increases in the

measured stock with its slope of unity. Figure 1 and sub-figure of zm = 0 in Figure 3

represent the identical constant escapement rules, while they use different variables as the

vertical axis.

Our findings in the non-eradication cases are as follows. First, the introduction of mea-

surement error could change the qualitative feature of the optimal policy from a constant

escapement rule to a non-constant escapement rule (see sub-figures in Figures 3 and 4). If
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the measured stock is below a certain level, no control is optimal as in the case of the absence

of measurement error. However, if the measured stock is above the certain level, the optimal

target removal increases non-linearly (with some concavity) in the measured stock, which

is in contrast to the case of the absence of measurement error, where the optimal target

removal increases linearly in the measured stock. Notice that the deviation of the optimal

policy from constant escapement rules becomes more distinguished as the degree of mea-

surement error gets larger (see sub-figures related to the cases of zm = 0.25 and zm = 0.5 in

Figures 3 and 4). These results could be consistent with those in stochastic fishery models of

Clark and Kirkwood (1986) and Sethi, Costello, Fisher, Hanemann, and Karp (2005), where

the presence of measurement error could fundamentally alter the optimal policy.

Second, more interestingly, sub-figures at the left in Figures 3 and 4 illustrate that the

relation of the intensity of target removal operations associated with growth uncertainty

could get reversed in the presence of measurement error. Sub-figures of zm = 0 in both

Figures 3 and 4 show that the optimal removal declines as the degree of growth uncertainty

rises, while in contrast, sub-figures of zm = 0.5 in both Figures 3 and 4 show that the optimal

target removal increases as the degree of growth uncertainty rises.

One possible explanation for this may emanate from the fact that measurement error

gives rise to a new important role of growth uncertainty in our dynamic problem, i.e., the

degree of growth uncertainty now has an impact on the expectation of current rewards

as well. Without measurement error, growth uncertainty only affects the expectation of

the continuation value in the dynamic programming equation (value in the next period).

However, if measurement error is present, growth uncertainty contributes to the uncertainty

associated with not only future but also “current” values. This is the critical difference

between the cases with and without measurement error. In the presence of measurement

error, a rise in the degree of growth uncertainty intensifies the uncertainty on current rewards

and thus reduces the expected current reward associated with the stock of invasive species
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compared to the case without measurement error.12 An important implication is that when

growth uncertainty is intensified in the presence of large measurement error, the importance

of controlling invasive species and current social damage rises so that the target removal

becomes more aggressive.

Third, from sub-figures at the right in Figures 3 and 4, we confirm that holding the degree

of growth uncertainty fixed, intensified measurement error could change the sensitivity of

the optimal target removal in response to the measured stock.13 Generally, an increase

in the measured stock makes the optimal target removal less aggressive compared to the

case without measurement error. To understand this, we notice that given a positive value

of zm, informational quality of measurement in hand gets worsen as the measured stock

increases, due to the multiplicative stochastic term of Zm
t . We would also say that zm can be

reinterpreted as a measure of how fast informational quality of measurement gets worse with

an increase in the measured stock. In the presence of measurement error zm, any control is

likely to be less effective as the measured stock becomes larger, since costly removal operation

must be implemented based on more imprecise information.

Fourth, the role of measurement error on informational quality also affects the critical

measured stock level at which the target removal operation is triggered. Sub-figures at

the right in Figure 3 suggest that the critical level in the case of zm = 0.25 is almost

identical to that in the case without measurement error zm = 0. However, once the degree

of measurement error becomes sufficiently large, i.e., zm = 0.5, the critical level becomes

smaller than that in the case without measurement error. That is, around the measured

stock level just above the critical value, an increase in the degree of measurement error

causes the optimal target removal to rise. This result is quite similar to the one obtained in

stochastic fishery models of Sethi, Costello, Fisher, Hanemann, and Karp (2005). Noticing

12This holds when the strict convexity of social damage is large enough. Jensen’s inequality can be applied
for the proof.

13Sub-figures at the left in Figure 3 show the comparison of optimal policies holding the degree of mea-
surement error, while sub-figures at the right show the comparison of optimal policies holding the degree of
growth uncertainty. In particular, sub-figures at the right can starkly clarify how measurement error causes
the optimal policy to deviate from constant escapement rules.
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that zm represents the speed at which informational quality of measurement gets degraded,

we might conclude that as zm becomes larger, the society officials have a stronger incentive

to control the stock before the measured stock becomes larger and informational quality

becomes much lower. Thus, an increase in the degree of measurement error zm could cause

the trigger level of the measured stock initiating removal operation to be small compared to

the case without measurement error.

However, we also confirm that this result is not quite robust on invasive species manage-

ment. This may be due to the fact that optimal policies are also dependent on other factors,

such as the degree of the convexity in the social damage function, which are unique on in-

vasive species. If we just change the parameter a2 = 2 into a2 = 1, then the introduction of

measurement error might cause the critical level of the measured stock in fact to get larger

(see sub-figure related to zg = 0.25 in Figure 4). In this case, the effect of the speed at which

informational quality gets worse dominates the incentive of controlling the stock earlier than

in no measurement error case which comes from convexity of social damage functions.

4.2 Eradication Case

This subsection examines how measurement error with growth uncertainty affects the optimal

policy in the eradication case where immediate eradication action can be optimal for some

levels of the measured stock. Figures 5 and 6 respectively present the base case and sensitivity

analysis case, both of which correspond to θ = 0.5. The difference between them is only

the value of a2, which represents the degree of convexity in the social damage function, as

in the previous subsection. In the absence of both growth uncertainty and measurement

error, the optimal policy in the base case is immediate eradication for any stock level, while

in the sensitivity analysis case it is immediate eradication or giving-up without any control

depending on whether the stock level is smaller or larger than a Skiba point (which is around

4.0 in this sensitivity analysis case).

All graphs in each sub-figure of Figures 5 and 6 show that as in the case of the absence
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of measurement error, there exists a critical level of the measured stock, which is a Skiba

point, such that immediate eradication is optimal if the measured stock is smaller than the

critical level, otherwise giving-up without control is optimal.14

In the presence of measurement error in addition to growth uncertainty, the optimal policy

may be more elusive in the sense that a clear pattern of the impacts of the uncertainties

on the optimal policies cannot be observed. Sub-figures in Figures 5 and 6 show that the

Skiba points are affected by the degrees of measurement error as well as growth uncertainty,

but they do not display a systematic shift of the Skiba point at all. One thing we may be

able to say is that as the degree of measurement error gets larger, the Skiba point becomes

less sensitive to a change in the degree of growth uncertainty (see sub-figures at the left in

Figures 5 and 6).

In general, however, such complexity arises from various other eradication cases in which

some parameters and functional forms are changed as alternative specifications. Therefore,

we would say that the issue on how multiple uncertainties affect the optimal policy remains

as an open question and would be a very interesting topic to be addressed in the future.

4.3 Value of Optimal Program

The previous subsections have focused on the qualitative change of the optimal policy in

response to a change in the degrees of growth uncertainty and/or measurement error. This

subsection examines the impact of multiple uncertainties on social welfare through numerical

analysis on the value function. We show the results in non-eradication and eradication cases

in order.

Figures 7 and 8 respectively correspond to the base case and sensitivity analysis case, as

14Some sub-figures in Figure 5 describe a situation where the optimal target removal is constant at some
positive level over some region of the measured stock. This constant target removal arises from the fact
that given some degree of measurement error, there exists a possible upper level of true stock. The society
officials just set the target removal at the upper level when the current measured stock is relatively large so
that the next period’s stock can be reached to the upper level with some positive probability, and when their
optimal policy is immediate eradication. Thus, even though some positive level of constant target removal
is observed over some region of the measured stock in sub-figures, it is aimed for eradication.
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in the previous subsections. They show some systematic features of the impact of growth

uncertainty and measurement error on the value function in the non-eradication case. First,

holding the degree of measurement error fixed, a rise in the degree of growth uncertainty

causes the graph of the value functions to shift up (see sub-figures at the left in Figures 7

and 8). This result might be surprising since growth uncertainty representing environmental

variability could improve social welfare if the society officials behave optimally. This may be

partly because a large degree of growth uncertainty enlarges the non-self-sustaining region

of the stock so that the future stock of invasive species is likely to be decreased even without

any control.

Second, holding the degree of growth uncertainty unchanged, a rise in the degree of

measurement error causes the graph of the value functions to shift down (see sub-figures at

the right in Figures 7 and 8). In other words, a rise in the degree of measurement error

would deteriorate social welfare, which is in sharp contrast to the impact of a change in

degree of growth uncertainty. This result is quite consistent with the one in the stochastic

fishery models of Clark and Kirkwood (1986). In other words, more accurate information

about the current status of invasive stock in general benefit a society in the non-eradication

case.

What kind of policy implications can we suggest out of these results concerning the value

of optimal programs in the non-eradication case? First, given the same degree of social dam-

age from invasive species, governments that need to control various kinds of invasive species

should prioritize the species that highly fluctuates owning to environmental variability. In

this way, governments could pursue more efficient allocation. Second, concerning measure-

ment error, when governments decide not to aim at eradication, improving the quality of

measurement, perhaps through technological improvement or more efforts on stock survey,

could be beneficial for a society.

We next turn to the eradication case under growth uncertainty and measurement error.

Figure 9 corresponds to the base case and exhibits complex patterns of shifts in the value
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functions, as in the discussion of the optimal policies in the previous subsection. One thing

to be noticed is that in the absence of measurement error, the graph of the value functions

shifts up as the degree of growth uncertainty rises (see sub-figure related to zm = 0 in Figure

9). However, once measurement error is introduced in the model specification, this feature

collapses. The value functions cross each other with some complexity, and thus we could

not draw clear conclusion on the impact of growth uncertainty and measurement error on

social welfare. The results concerning the value function in the eradication case suggests

that improving the informational quality related to measurement error does not necessarily

benefit management programs. This result is also opposite to the one in non-eradication

cases.

5 Conclusion

This paper has examined how growth uncertainty and measurement error affect the optimal

policy on invasive species management. Although there might be other factors that com-

plicates the management decisions, such multiple uncertainties are among the main factors

that government officials should take into account in advance. We have shown that such

uncertainties could significantly alter not only qualitative features of the optimal policy, but

also the value of management practices. While some of our results are common to the find-

ings of stochastic fishery models in the past literature, we found a series of novel results,

focusing on the two cases: the non-eradication case with a relatively large sensitivity of

catchability in which the constant escapement rule would be optimal in the deterministic

setting; and the eradication case with a relatively small sensitivity of catchability in which

immediate eradication would be optimal in the deterministic setting. We believe that some

of our results would be valuable for real management practices.

We demonstrate that in the non-eradication case, growth uncertainty does not cause the

qualitative feature of the optimal policy to change from the constant escapement rule, but
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it alters the target escapement level in the optimal policy, as in Reed (1979). One of the

important and new findings is that the target escapement level may not monotonically vary

with the degree of growth uncertainty. In fact, the impact could be U-shaped in the sense

that the target escapement level is decreasing and then is increasing in the degree of growth

uncertainty. On the other hand, in the eradication case, growth uncertainty could yield a

Skiba point in the optimal policy, which suggests that waiting with more patience is required

before eradication actions are taken in optimal policies, as the degree of growth uncertainty

increases. In addition, the value of optimal programs in both cases is increasing in the degree

of growth uncertainty.

Concerning multiple uncertainties, we identify that the introduction of measurement er-

ror, in addition to growth uncertainty, significantly affects the qualitative features of the

optimal policy in both the non-eradication and the eradication cases. In the non-eradication

case, measurement error could cause the optimal policy to deviate from the constant es-

capement rules, and also the impact of measurement error is significantly affected by the

degrees of growth uncertainty. In particular, given a small degree of measurement error, less

removals are required as the degree of growth uncertainty rises. In contrast, given a large

degree of measurement error, more removals are required as the degree of growth uncertainty

rises. These imply that the adaptation to the growth uncertainty in the optimal policy could

get reversed in the presence of measurement error. On the other hand, in the eradication

case, the presence of measurement error also affects the optimal policy in that a Skiba point

moves in complex manners. However, we could not find some systematic patterns, and this

issue leaves us an open question.

This study has also examined the values of the optimal program in the presence of both

growth and measurement uncertainty. In the non-eradication case, the value of optimal

programs is generally monotone increasing in the degree of growth uncertainty, while it is

monotone decreasing in the degree of measurement error. These findings suggest that given

the same degree of social damage from invasive species, governments that need to control
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various kinds of invasive species should prioritize the species that highly fluctuates owning

to environmental variability. Moreover, improving the quality of measurement generally

benefits a society. On the other hand, in the eradication case, the value of the optimal

program could be monotone increasing in the degree of growth uncertainty in the absence of

measurement error. However, once measurement error is present, the values exhibit complex

curvature in the sense that they could cross each other. Thus, we could not draw a clear

conclusion on this. In other words, if the optimal policy involves some eradication actions,

there is no clear agreement on whether uncertainty is better or not for a society.

Although we have confirmed through sensitivity analysis that the above results could

be obtained from other different functional forms and parameter sets that satisfy the basic

assumptions we imposed in this paper, some attention must be paid to the specification of

uncertainty. We assume that growth uncertainty and measurement error are a Markovian,

and the probability distributions are fully known with parameters. In reality, these suppo-

sitions can be questioned. What we can do instead in future researches may be to apply

the Bayesian learning model for unknown parameters or the Kalman filter for alternative

assumptions of state space modeling. However, it is our belief that this paper could be

considered a starting point of researches on invasive species management in the presence of

uncertainty, and we hope that some potential extensions as listed above would be made in

the near future.
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Figure 1: Base case: Optimal policy in non-eradication case under growth uncertainty
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Figure 2: Base case: Optimal policy in eradication case under growth uncertainty
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Figure 3: Base case: Optimal policy in non-eradication case under growth uncertainty and
measurement error [Fix zm (Left); Fix zg (Right)]
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Figure 4: Sensitivity analysis: Optimal policy in non-eradication case under growth uncer-
tainty and measurement error [Fix zm (Left); Fix zg (Right)]
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Figure 5: Base case: Optimal policy in eradication case [Fix zm (Left); Fix zg (Right)]
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Figure 6: Sensitivity analysis: Optimal policy in eradication case under growth uncertainty
and measurement error [Fix zm (Left); Fix zg (Right)]
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Figure 7: Base case: Value function in non-eradication case [Fix zm (Left); Fix zg (Right)]
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Figure 8: Sensitivity analysis: Value function in non-eradication case [Fix zm (Left); Fix zg

(Right)]
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Figure 9: Base case: Value function in eradication case [Fix zm (Left); Fix zg (Right)]
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