
              

                                                
 
 
 
 
 

Optimal Escapement Levels on Renewable 
Resource Management under Process Uncertainty: 
Some Implications of Convex Unit Harvest Cost 

 
 

 

Koji Kotani 
International University of Japan 
 
Makoto Kakinaka 
International University of Japan 
 
Hiroyuki Matsuda 
Yokohama National University 
 
 
 
April 2008 
 
 
 
 
Graduate School of International Relations 
International University of Japan 
                                          
http://gsir.iuj.ac.jp/ 
 
 
 
                                                                               

     

       
GSIR WORKING PAPERS 
 

Economic Analysis & Policy Series  EAP08-2 
 

 



 

                                                 

 
GSIR Working Papers 

Economic Analysis & Policy Series  EAP08-2 
 
 
 

Optimal Escapement Levels on Renewable Resource Management under 
Process Uncertainty: Some Implications of Convex Unit Harvest Cost*

 
 
 

Koji Kotani 
Graduate School of International Relations, International University of Japan 

 
Makoto Kakinaka 

Graduate School of International Relations, International University of Japan 
 

Hiroyuki Matsuda 
Faculty of Environment and Information Sciences, Yokohama National University 

 
 
 

Abstract 
The terminology of renewable resource management becomes to span not only prototype 
harvesting problems but also various new types such as invasive species one. In all of these 
problems, process uncertainty of stock growth associated with environmental variability is one of 
the critical factors that significantly affects the management efficiency. While it may seem that a 
series of past researches fully examine optimal policy under process uncertainty, the case of 
convex unit harvest costs has not been fully characterized yet. Focusing on such a case, this 
paper addresses how the degree of process uncertainty affects optimal escapement level. The 
result suggests that optimal escapement level does not monotonically vary with process 
uncertainty. In many plausible cases, it should be adapted in a U-shaped manner, which is in 
contrast with the conventional wisdom. 
 
 
 
Key Words: renewable resource management, constant escapement rule, process uncertainty, 
convex unit harvest cost 
 
 

 

 
GSIR working papers are preliminary research documents, published by the Graduate School of 
International Relations. To facilitate prompt distribution, they have not been formally reviewed and 
edited. They are circulated in order to stimulate discussion and critical comment and may be revised. The 
views and interpretations expressed in these papers are those of the author(s). It is expected that most 
working papers will be published in some other form.  
 
* We are responsible for any remaining errors. 



1 Introduction

Optimal harvesting policies on renewable resource management have been studied in vari-

ous settings. One oft-taken approach is to consider uncertainty. While uncertainty can be

categorized into several types, the focus of many past works is on the impact of process

uncertainty associated with environmental variability. Such an issue would become more

salient in the future since the presence of process uncertainty is unavoidable in most renew-

able resource management, and it is also reported that environmental fluctuation increases

more due to various factors, such as climate change (see, e.g., Intergovernmental Panel on

Climate Change (2001) and Karl et al. (1995)).

The pioneering work focusing on process uncertainty is Reed (1979) that provides the

conditions for an interior constant escapement rule to be optimal and characterizes its es-

capement levels. An interior constant escapement rule is simply expressed as

h∗t = max(Xt − S∗, 0) (1)

where Xt is the current stock, S∗ is the optimal target escapement and ht is optimal harvest

for t = 0, 1, . . ..

However, the set-up in his model is somewhat tailored for a fishery problem, and also the

analysis still remains unresolved for the case of convex unit harvest costs. The reason for

this may be due to the argument that the convex unit harvest cost had been considered rare

in fishery problems, although Clark (1990) gives some justification for such a case to hold.

Another reason may be that analytical derivations are generally considered quite difficult or

impossible in the case of convex unit harvest costs.

The terminology of renewable resource management has recently become to span not

only prototype harvesting problems but also various new types such as invasive species

management. A number of papers suggest that strictly convex unit harvest costs are plausible

in such new types of problems. For instance, Bomford and O’Brien (1995) and several others

argue that killing the first 99% of a target population can cost less than eliminating the last
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1%. More precisely, the operational cost of removing one unit of invasive species may be

escalated as the existing population decreases, and it is particularly evident in the last 10%

population. This anecdote implies that the convexity could hold for unit harvest costs.

Given this state of affairs, the purpose of this paper is to extend the framework of the

model to general renewable resource management.1 We then examine the possibility that

an interior constant escapement rule is optimal for more general problems when the unit

harvest cost function is strictly convex. We finally demonstrate how the optimal escapement

level could respond to the degree of process uncertainty.

The results suggest that the optimal escapement level could be non-monotonically changed

with the degree of process uncertainty, which is in contrast with the conventional wisdom.

In particular, it must be adapted in a U-shaped manner as the degree of process uncertainty

rises.2 To illustrate that this result holds for general renewable resource management, two

distinct problems are introduced as examples: (i) fishery harvesting problem; and (ii) in-

vasive species problem, in which a main common feature is that the unit harvest costs are

strictly convex.

This paper seeks to cast some attention to the case of convex unit harvest costs under

process uncertainty. The good point of such analysis on a unit harvest cost is that for the

management agency, it is relatively easy to check its curvature from the field data such as

the catch per unit of effort (CPUE), and thus it may be of some guidance for real practices.

Together with the results obtained by Reed (1979), we believe that our results add to the

understanding of optimal escapement levels with respect to the degree of process uncertainty.

This paper is organized as follows. In the next section, we introduce the model. The

section is followed by presenting the analysis with some important results. In that section,

numerical illustration is also given. Some conclusion is offered in the final section.

1The general renewable resource management in this paper includes any type of problems in which social
benefit or damage is dependent on escapement or harvest of renewable resources in addition to harvest costs
which are a function of both stock size and harvest.

2What we stand for by conventional wisdom here is that fact that the optimal escapement level under
process uncertainty is larger than the one in the deterministic setting in most cases, and its escapement level
must be adapted in a monotone increasing manner with respect to process uncertainty (see Reed (1979) and
Clark (1990))
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2 The Model

We set up an infinite-period stochastic model of renewable resource management with convex

unit harvesting costs. Throughout this paper, of particular interest is “process uncertainty,”

which is also denoted by “growth uncertainty” or “environmental variability.”3 We introduce

the condition under which a class of interior constant escapement rules is optimal and then

demonstrate the possibility that the target escapement level should non-monotonically be

changed with the degree of process uncertainty.

Process uncertainty in each period t = 1, 2, . . . ,∞ is modeled by random variable {Zt}

which is a sequence of independently and identically distributed random shocks with mean

1 and finite support [1− zg, 1 + zg], zg ∈ [0, 1], according to a common distribution function

Φ. With this specification of process uncertainty, the distribution is mean-preserving spread

with respect to zg so that an increase in the degree of process uncertainty is equivalent to a

rise in zg. The stock of renewable resource evolves according to the following state equation:

Xt+1 = Ztf(xt − ht) = Ztf(st), (2)

where f is the expected reproduction function that generates the next period stock Xt+1,

depending on current period stock xt and harvest ht, that is, the escapement level, st = xt−ht

at period t. We assume that f is twice differentiable and strictly concave with f(0) = 0 and

f ′(0) ∈ (1,∞), and there exists an undisturbed stock level, τ > 0 with τ = f(τ) such that

f(s) > s if s ∈ (0, τ).

The social welfare in each period consists of social benefit that emanates from harvesting

renewable resource stock and the cost associated with its operations. The social benefit in

period t is given by B(st), where B is concave in st. The harvesting cost in period t is given

by C(ht, xt) and C is increasing in ht with C(ht, xt) ≥ 0 for any ht and xt. The harvesting

cost function in each period depends not only on the harvested stock but also on the existing

3It could be understood that process uncertainty is distinct from measurement and implementation un-
certainty, as in the same way Sethi et al. (2005) interpret.
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invasive species in that period. As in the most of previous researches, the harvesting cost in

period t is assumed to be:

C(ht, xt) =

∫ xt

xt−ht

c(z)dz,

where c(xt) is the unit cost that depends on the current stock xt (see, e.g., Reed (1979),

Costello et al. (2001), Moxnes (2003), and many others).

This study focuses on the case where the unit harvest cost is strictly decreasing and

strictly convex in the stock level, that is, c′(·) < 0 and c′′(·) > 0.4 From the above, the social

welfare in period t is given by:

u(xt, ht) = B(xt − ht)− C(ht, xt).

The objective of a society is to maximize the expected present value of social welfare by

choosing a sequence of harvest in each period, {ht}∞t=0:

max
ht∈[0,xt]

E

{
∞∑
t=0

ρtu(Xt, ht)

}

subject to Xt+1 = Ztf(st) and st = xt − ht, where ρ ∈ (0, 1) is the discount factor, and E is

the expectation operator. The Bellman equation for this problem is posed as:

v(xt) = max
ht∈[0,xt]

{u(xt, ht) + ρE(v(f(xt − ht)))} ,

where v(·) is the value function given the current stock size.

3 Analysis

This section seeks to explore how the increase in the degree of process uncertainty affects

the optimal escapement level in the case of convex unit harvest costs. For this purpose,

4The rationale of these properties of the unit cost function is given by a series of past literature in the
renewable resource management (see, e.g., Clark (1990)).
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following Kotani et al. (2007), we transform the social welfare at period t into u(xt, ht) =

B(xt − ht) − [Q(xt − ht) − Q(xt)], where Q(x) ≡
∫ m

x
c(z)dz ∈ [0,∞] with m = max{(1 +

zg)f(s)|(1 + zg)f(s) ≥ s, s ≥ 0}. The term of Q(x) represents the operational cost of

harvesting renewable resources from the possible maximum stock level m to some stock level

x. Applying the fact that Xt+1 = Ztf(st), we rewrite the objective function as:

E

{
∞∑
t=0

ρtu(Xt, Xt − st)

}
= Q(x0) + E

{
∞∑
t=0

ρtΓ(st, Zt)

}
, (3)

where Γ(st, Zt) = B(st)−Q(st) + ρQ(Ztf(st)). We denote the expected discounted growth

in the immediate value by:

g(s) =

∫ b

a

Γ(s, z)dΦ(z) = B(s)−Q(s) + ρ

∫ 1+zg

1−zg

Q(zf(s))dΦ(z).

In the deterministic case of zg = 0, the discounted growth in the immediate value corre-

sponding to the above equation simplifies to:

l(s) = B(s)−Q(s) + ρQ(f(s)).

Our focus is on how process uncertainty affects the optimal policy in a case where an

interior constant escapement rule is optimal. For this purpose, it is assumed that g(s) and

l(s) are strictly concave and unimodal in s over the possible range [`,m] with ` < m, for

given zg.
5 With this assumption, optimal policy is an interior constant escapement rule, i.e.,

h∗t = max(Xt − S∗, 0), (4)

where S∗ ∈ (`,m) is an optimal target escapement. For obtaining more concrete conditions,

further assumptions on the functional form of B(s) must be imposed, which we will discuss

5The lower bound of ` depends on the type of problems we analyze. For example, in a fishery problem `
is typically defined as the zero profit stock level (see Reed (1979)), while ` could be simply set as ` = 0 in
the other class of problems such as pest controls.
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more later on.

For the characterization of optimal escapement levels, we first let s̄ denote the escapement

level attaining the maximum of l(s) in our deterministic model. In this setting, the interior

constant escapement rule is optimal, and the optimal target escapement level is equal to

s̄. However, the optimal policy in the stochastic setting is rather complex. Let σ ∈ (`,m)

denote the escapement level attaining the maximum of g(s). We call it a “short-sighted

optimal escapement level.” Reed (1979) finds that if σ is self-sustaining, i.e., zF (σ) ≥ σ for

all z such that Φ(z) > 0, then the interior constant escapement rule with target level S∗ = σ

is optimal. If σ is not self-sustaining, then the interior constant escapement rule is still

optimal, but the target escapement level S∗ is larger than σ, i.e., S∗ > σ. The short-sighted

optimal escapement level σ could be just considered a lower bound of the optimal target

escapement level S∗ in the stochastic model.

To compare the short-sighted optimal escapement level σ in the stochastic case with the

optimal escapement level s̄ in the deterministic case, we take the differentiation of g(s)−h(s):

g′(s)− l′(s) = ρf ′(s)

[
c(f(s))−

∫ 1+zg

1−zg

zc(zf(s))dΦ(z)

]
. (5)

Applying Jensen’s inequality, our model specification implies the following three cases de-

pending on the property of xc(x):

Case 1 σ < s̄ if xc(x) is strictly convex;

Case 2 σ = s̄ if xc(x) is linear;

Case 3 σ > s̄ if xc(x) is strictly concave.

Notice that case 1 is possible only when the unit cost c(x) is strictly convex. As mentioned

in Reed (1979), case 1 is exactly a class of unresolved problems in that the optimal policy

is not fully explored when process uncertainty increases. Thus, to fill the gap, the following

subsection focuses on examining such a case and demonstrates that the optimal escapement

level would be in a non-monotonic U-shaped manner.
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3.1 Strictly Convex Unit Harvest Costs

In order for case 1 to hold, the unit cost function must satisfy the condition that xc(x) is

strictly convex, i.e., 2c′(x)+xc′′(x) > 0 for all x ∈ [`,m]. The assumption that c(x) is strictly

decreasing and strictly convex is not sufficient to guarantee that case 1 holds. However, the

specification that have been extensively used in renewable resource management implies that

case 1 could be plausible. For example, consider the following unit cost function:

c(x) =
k

bxθ
, (6)

where k is the cost per unit of effort, and b is a parameter to be adjusted for stock units. The

parameter θ could be interpreted as the sensitivity of catchability (see Kotani et al. (2006)

and Kotani et al. (2007)).6 This specification is employed in a series of literature including

Reed (1979), Clark (1990), Moxnes (2003), and others. Case 1 can apply if the sensitivity

of catchability is larger than unity (θ > 1) so that xc(x) is strictly convex. To focus on case

1, we assume θ > 1 in the rest of the paper.

One question now arises: how likely is the sensitivity of catchability larger than unity?

The justification for this is first provided by Clark (1990) for fishery problems. As of other

renewable resource management, the invasive species problem is a noticeable example as

noted in the introduction, in which the sensitivity of catchability, θ, could be very large.

3.2 Illustration

This subsection illustrates how process uncertainty affects the optimal escapement level in

the two distinct problems, fishery management and invasive species management, where the

unit cost function takes the form of equation (6) with θ > 1. By inspection of equation

6The stock-dependent catchability is specified as q(x) = bxθ−1. The catchability represents the extent to
which the stock size is susceptible to one unit of effort for harvesting. Catch per unit of effort, or the stock
size that can be harvested by one unit of effort, is given by p(x) = xq(x). Assuming that the cost per unit
of effort is constant at k, we write the unit harvest cost as c(x) = k/p(x) (see, e.g., Clark (1990)). If the
catchability is strictly increasing in x, i.e., θ > 1, then both catch per unit effort and the unit harvest cost
are strictly convex.
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(5), the short-sighted optimal escapement σ ≡ σ(zg) is monotone decreasing in the degree

of process uncertainty, zg, due to the property of second order stochastic dominance. Since

σ is the optimal escapement level as long as it is self-sustaining, an increase in zg causes the

optimal escapement level to decline.

It should also be noted that as zg increases, the region of the escapement levels that

meet the self-sustaining property shrinks. If zg becomes large enough, the short-sighted

optimal escapement σ is not the optimal escapement level any longer and just indicates its

lower bound. Combining these two facts, we can derive the following fact: There exists a

critical level of the degree of process uncertainty, z∗g > 0, such that if the degree of process

uncertainty is relatively small with zg < z∗g , then σ is self-sustaining, and hence it is the

optimal escapement level. Otherwise, σ is not self-sustaining, and it is nothing but a lower

bound for optimal escapement levels.

Unfortunately, when zg is large enough that σ is not self-sustaining, analytical derivation

for identifying the optimal escapement level S∗ is impossible or unresolved as mentioned in

Reed (1979). At this point, what we have in advance as information about S∗ is nothing

but a lower bound of σ that is monotone decreasing in zg. From now on, we attempt to

illustrate that in contrast to the case where σ is self-sustaining, the optimal escapement level

is increasing in zg when zg is large enough such that σ is not self-sustaining, i.e., zg > z∗g .

Thus, the optimal escapement level non-monotonically responds to an increase in the degree

of process uncertainty, i.e., S∗ is decreasing in zg when zg is relatively small, but S∗ is

increasing in zg when zg is relatively large. This feature is first noted in the discussion on

the invasive species management in Kotani et al. (2007).

For the purpose of showing a non-monotonic, U-shaped property of optimal escapement

levels for general renewable resource management, we consider two different types of prob-

lems: (i) fishery management; and (ii) invasive species management, by numerically solving

for the optimal policy in a class of analytically intractable problems. In terms of fishery prob-

lems, Reed (1979) argues that an interior constant escapement rule can be optimal under

process uncertainty irrespective of whether the sensitivity of catchability is larger or smaller
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than unity. He also claims that its escapement level under process uncertainty is larger than

the deterministic one in most plausible cases of θ < 1. Contrary to fishery problems, Kotani

et al. (2007) show that in the invasive species management, an interior constant escapement

rule can be optimal only when the sensitivity of catchability, θ, is sufficiently large. Further-

more, if θ is larger than unity, then it is highly likely that an interior constant escapement

rule is optimal.

In illustration of using these two problems, we impose some common functions and param-

eters for simplicity: ρ = 0.95 for the discount factor; the Bevertion-Holt reproduction func-

tion f(s) = As/(1 +Bs) with A = 10 and B = 1; and the unit cost function c(x) = k/(bxθ)

with b = 1 and θ = 1.1.7

Fishery Management

Reed (1979) derives a set of conditions that must be satisfied for an interior constant escape-

ment rule to be optimal. The parameters and functional forms we employ in this illustration

are aligned to satisfy the conditions. We take k = 1 as the cost per unit of effort and set

B(st) = pht = p(xt−st) as the social benefit or the profit in each period, where ht and p = 1

are respectively harvest and the price per harvest in that period.

In the deterministic setting of zg = 0, the constant escapement rule with target S∗ ≈

2.5985 is optimal. Figure 1 presents that the short-sighted optimal escapement level, σ

is monotone decreasing in the degree of process uncertainty, zg, as in our analytical result.

More importantly, Figure 2 exhibits that the optimal escapement level, S∗, is non-monotonic

and inverse unimodal in zg, and the critical level of the degree of process uncertainty is

approximately z∗g ≈ 0.61. For zg > z∗g ≈ 0.61, S∗ is increasing in zg, while S∗ is decreasing

in zg and is identical to σ(zg) for zg < z∗g . Overall, the optimal escapement level S∗ changes

in a U-shaped manner as zg changes.

7We conduct sensitivity analysis by supposing other functional forms and parameter sets in current
rewards and stock reproduction such as Riker or logistic. All of the results are qualitatively the same as the
one presented in what follows.
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Invasive Species Management

In terms of invasive species management, Kotani et al. (2007) derives a set of the conditions

that must be satisfied for an interior constant escapement rule to be optimal. Similar to

the previous arguments, the parameters and the functional form are taken to satisfy the

conditions. We take k = 50 as the cost per unit of effort and set B(st) = −a1st − a2s
2
t/2 as

the social damage that emanates from invasive species with a1 = 1 and a2 = 2.

In the deterministic setting of zg = 0, the constant escapement rule with target S∗ ≈

3.9885 is optimal. Figure 3 presents that σ is decreasing in zg, and Figure 4 shows that S∗ is

non-monotonic and inverse unimodal in zg. Notice that the qualitative features with respect

to σ and S∗ are the same as in the previous example of fishery management. The critical

common feature in the two examples is a strictly convex unit harvest cost c(x) associated

with θ > 1.

4 Discussion and Conclusion

The intuitions for the non-monotone property in optimal escapement levels could be ex-

plained as follows. When the degree of process uncertainty, zg, is sufficiently small, there is

not much worry or risk about the decline in the next period stock so that harvesting can be

more focused upon improving the current reward. Since the unit harvest cost is convex, such

small uncertainty works in the positive direction for the reward obtained from harvesting

in the current period. That is, the optimal escapement level is decreasing in the degree of

process uncertainty as long as the degree is sufficiently small.

On the other hand, once the degree of process uncertainty becomes larger over a certain

level, the harvesting activities must be restrained. Since an increase in zg implies mean-

preserving spread of process uncertainty, the support that can be taken in the next period

will expand. In other words, the next period stock is more likely to decline so that utilizing

much renewable resource in the current period yields high risk of the future value. This

negative effect of large uncertainty in the future value could dominate the positive effect of
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uncertainty in the current reward. That is, the optimal escapement level is increasing in the

degree of process uncertainty when the degree is sufficiently large.

Even though we do not delve into the concrete conditions for an interior constant escape-

ment rule to be optimal, they are shown in Reed (1979) for fishery as well as in Kotani et al.

(2007) for invasive species problems. Interestingly enough, the adaptation of the optimal

escapement levels under process uncertainty are qualitatively the same in both profit max-

imization of fishery and damage minimization of invasive species problems. The remaining

topic may be the problems of conflicts between wild animals and humans, such as the one

analyzed by Rondeau and Conrad (2003), in which the conditions for an interior constant

escapement rule to be optimal are not derived in the discrete time setting yet.

We are hopeful that the result would help on the management-decision under uncertainty

and raise some caution in the case of convex unit harvest cost, which could be plausible

especially when the invasive species or some nuisances must be culled to control social welfare.
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Figure 1: σ as a function of zg in fishery problems
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Figure 2: S∗ as a function of zg in fishery problems
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Figure 3: σ as a function of zg in invasive species problems
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Figure 4: S∗ as a function of zg in invasive species problems
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