GSI R WORKING PAPERS

Economic Analysis \＆Policy Series EAP09－2

ender Salary Differences in Economics Departments in J apan

Ana Maria Takahashi University of Utah

 andShingo Takahashi I nternational University of J apan

February 2009

Graduate School of International Relations
International University of Japan
http：／／gsir．iuj．ac．jp／

GSIR Working Papers
 Economic Analysis \& Policy Series EAP09-2

Gender Salary Differences in Economics Departments in Japan

Ana Maria Takahashi ${ }^{1}$
Department of Economics, University of Utah
and
Shingo Takahashi ${ }^{2}$
Graduate School of International Management, International University of Japan

Abstract

By using unique data about academic economists in Japanese universities, we conduct the first detailed study of gender salary differences within Japanese academia. Despite the common belief among Japanese academics that there cannot be a gender salary gap within the Japanese academia, our empirical results show that female academic economists earn 7\% less than comparable males, after controlling for rank and detailed personal, job, institutional and human capital characteristics. The coefficient for the female dummy has almost the same value, regardless of whether rank is included or excluded from the salary equation, suggesting that there is a significant gender salary gap within each rank, but there are no gender differences in rank attainment. Our results contrast with findings from previous studies in the US and in the UK where most of the gender salary differences stem from rank attainment differences. We provide possible explanations for why our results are different. Refereed articles, the most commonly accepted measures of productivity, have no statistically significant effect on salary. The fixed-term employment is associated with 24% lower annual salary and private university has a salary premium of 16%.

[^0]
1 Introduction

There is now a large body of literature on labor market discrimination. Labor market discrimination is a situation in which an otherwise identical person is treated differently by virtue of that person's gender or race (Heckman 1998). A large part of the literature on labor market discrimination focuses on the problem of gender salary differences. This paper seeks to explore the problem of gender salary differences among Japanese academic economists by using an original data set collected via a mail survey.

A great number of studies have already examined gender salary differences within the academic profession in the US and the UK (Broder 1993; McNabb and Wass 1997; Ward 2001; Ginther and Hayes 2003; Blackaby et al. 2005). Most of these studies found that much of the gender salary differences in academia stems from the differences in rank attainment between males and females. By using data from Scottish universities, Ward (2001) finds that female academics receive 7% lower salary than males, after controlling for various productive and institutional characteristics, but without controlling for rank. When rank is controlled for, the estimated salary gap is reduced to 3.2% and becomes statistically insignificant. By using data from the Surveys of Doctorate Recipients in the US, Ginther and Hayes (2003) find negligible gender salary differences within rank, but substantial gender differences in rank attainment. Blackaby et al. (2005) use data from British universities, and find that the gender salary gap nearly halves when rank is controlled for.

In contrast to the abundance of literature in the US and the UK, there have been few studies about the gender salary gap within Japanese academia, despite a growing public interest in gender equality in Japan. In 1999, Japanese government enacted the Basic Law for Gender Equal Society. Consequently, in 2000, the Association of National Universities set out an Action Plan stipulating that each national university should increase the proportion of female academics to 20% by 2010. In 2008, the Ministry of Education, Sports, Science and

Technology (MEXT) announced that it would provide 6 million yen in support, to selected universities, for each female academic hired ${ }^{1}$. Despite such an interest in achieving gender equality in academia, little is known about gender differences within Japanese academia. A study conducted by the EPMEWSE ${ }^{2}$ (2008:18) shows that average salaries differ between male and female Japanese academics, after controlling for age. However, the study does not control for any other differences in characteristics between male and female academics. Therefore, a detailed study of gender salary differences is called for.

We conduct the first detailed study of gender salary differences within Japanese academia by using a data set that we collected via a mail survey administered in 2008. Our study focuses on academic economists. For each academic in our sample, our data contain detailed productivity characteristics, such as publication record and the amount of research grants, detailed information about career history, and detailed institutional characteristics.

There are at least two reasons why the study of gender salary gap within the Japanese academic labor market is of interest to researchers. First, there is a common belief among Japanese academics that there cannot be a gender salary gap within Japanese academia. In Japan, academics' salaries are determined by a rigid payment scheme, called the 'salary table', with distinct pay scales for each rank. It is commonly believed that age, experience, and education levels are the only criteria that determine the payment level. It is also believed that promotion is automatic, based on age and experience. If these beliefs were true, then salary would be a deterministic function of age, experience, and education, leaving little room for a gender salary gap. However, there have been no empirical investigations into wether such beliefs are in fact true. Therefore, whether or not there are gender salary differences within Japanese academia is still an open empirical question.

Second, there are important institutional differences between the US and Japanese

[^1]academia; differences that may cause a very different pattern of gender salary gap in Japan compared to that in the US. In US academia, both salary determination and promotion decisions are departmental matters. Departments manage the budget for salaries and decide remuneration. Promotion decisions are also made at the department level, typically by a faculty committee. In contrast, in Japanese academia, only promotions decisions are made at the department level, typically by a faculty committee. The salary for each academic is typically determined by the university's personnel division ($j i n j i-b u$), and not by the department ${ }^{3}$. Thus, in Japanese academia, salary and promotion decisions are handled by two different entities. This indicates that salary determination and promotion decisions are based on information with different levels of accuracy. Since salary is not decided at the department level, salary may be determined based on less accurate information about academic productivity. For example, the personnel division may not receive the full set of information about academic performance. Moreover, as the personnel divisions consist of non-academics, they may not be capable of assessing some aspects of productivity such as the quality of publications. On the contrary, promotion may be determined based on more accurate information, since it is determined at the department level by fellow academics. Information about academic productivity would be readily available to faculty, and research quality can be more accurately evaluated by academics than non-academics.

Since the accuracy of information is a central issue in theories of statistical discrimination, it is possible that statistical discrimination or prejudicial beliefs about female academics' productivity, if these exist, would manifest in terms of gender salary differences rather than in terms of promotion differences. Therefore, unlike in the US and the UK where promotion gaps are the main source of gender salary gap in academia, we may see a very different pattern of gender salary gap within Japanese academia.

[^2]We organize our paper as follows. Section 2 presents main theories of discrimination. Section 3 discusses relevant empirical literature. Section 4 briefly outlines the background information. Section 5 describes the empirical methodology. Section 6 presents the data and Section 7 presents the variables used for estimation. Section 8 contains the estimation results and Section 9 discusses the sample selection bias problem. Section 10 includes a discussion of the results and Section 11 concludes.

2 Theories of discrimination

2.1 Statistical discrimination theory

Theoretical economic literature advanced two major employer discrimination theories to explain different average salaries for members of two presumably equally productive groups: statistical discrimination theory and taste-based discrimination theory.

Phelps (1972) developed a model which assumes that the average productivity of females is lower than males'4. In addition to the observable productivity characteristics of an individual, employers use the individual's association with a particular group to predict the productivity of a worker. A female may receive lower salary than a male of the same productive characteristics because employers use the average characteristics of the female group to predict the female workers' productivity. This model has been criticized by Aigner and Cain (1977) who argued that this model is not a description of discrimination. In Phelp's model, the conclusion depends on the assumption that females and males have different average productivity. Once this assumption is removed, the average male and female salary will be the same. This is because, males with higher test scores (that is, higher ability) will earn higher salaries than females with the same scores, while males with lower test scores (that is, lower ability) will earn less than females with the same scores, thus completely offsetting the gender salary differences. This criticism led to a new statistical discrimination model.

[^3]Aigner and Cain (1977) developed a model in which the average productivity of males and females is the same, but an observed variable that indicates the ability of an individual (that is, test scores) is less informative for females. By introducing the assumption that the employer is risk averse, they showed that females would receive lower wages even when male' and female' average productivity is the same. In this model, females receive lower wages because the observed variable describing productivity is less informative for them and because the risk averse employer needs to be compensated for taking the risk of employing workers whose ability is less certain.

In Arrow's model (1973), employers have prejudicial beliefs (preconceived ideas) that female workers are less productive than males. Arrow shows that, if it is costly to learn the workers' ability, prejudicial beliefs cause the average female wage to be lower than male'. Arrow further shows that such prejudicial beliefs affect workers behavior such that females invest less in human capital, thus perpetuating the beliefs.

Lundberg and Startz (1983) expanded Phelps' (1992) model by endogenizing human capital investment decision. In their model, employers only observe a test score which is a noisy indicator of a worker's marginal product. Furthermore, the test score is assumed to be less informative for females. Then, as in Phelps' (1972) model, the wage-test score profile is flatter for females, thus returns to human capital investments are lower for females. Workers invest in human capital to the point where marginal cost of investment just balances the incremental benefit from that investment. Thus, females invest less in human capital due to lower returns to human capital investments, causing the average female's wage to be less than male'.

2.2 Taste-based discrimination theory

Taste-based discrimination theory was first articulated by Becker (1971) and Arrow (1971). In this theory, discrimination arises from employer's distaste against working with a par-
ticular group of people such as females. If the employer hires those he distastes, he gains less utility. In a utility maximization framework, Becker shows that even when females and males are perfect substitutes in production, the short-run equilibrium wage for females will be lower than that of males'. This model also predicts that, in a competitive market, discriminatory firms would disappear. Non-discriminatory employers earn higher profits than discriminatory employers, since they are willing to hire workers who have been discriminated against and whose wages are lower. Thus, non-discriminatory firms are able to purchase discriminatory firms, indicating that there will be no discriminatory firms in the long-run.

However, due to persistent discrimination in the long-run, Becker's model became criticized. Several authors modified Becker's model to explain that discriminatory firms can in fact survive in the long run. Goldberg (1982) modified Becker's model to incorporate nepotism toward males, showing that nepotistic firms can survive in the long-run. In Goldberg's model, the nepotistic employer obtains extra non-pecuniary gains from hiring males. In a utility maximization framework, the short-run equilibrium wage is lower for females than for males. However, the price the neutral firm has to pay to purchase the nepotistic firm is not equal to nepotistic firm's profit alone, but profit plus the non-pecuniary gain the nepotistic firm enjoys. Although neutral firms have higher profits, their profits are not high enough to cover for the additional non-pecuniary gain. Therefore, nepotistic firms would survive in the long-run.

Along with Goldberg's model, there have been other departures from Becker's standard model. Black (1995) developed a model of employer discrimination by using a job search model in which the existence of discriminatory firms increases the search cost incurred by females. The presence of such a search cost gives firms monopsonistic power. Thus, firms by exploiting their monopsonistic power, offer lower wages for females. Rosen (2003) also uses a job search framework. Discriminatory firms pay lower wages for females as compared to neutral firms, but their hiring decision is suboptimal (non-profit maximizing). When the
discrimination coefficient is not 'too high', discriminatory firms attain higher profit than neutral firms since the gains from lower wages outweigh the losses from suboptimal hiring. However, discriminatory firms have lower utility than neutral firms, indicating that discriminatory firms will disappear in the long run due to takeover. By introducing the separation between ownership and management, Rosen shows that discriminatory firms would have both higher profit and higher utility, thus they would survive in the long run.

3 Previous empirical literature

There is abundant literature that investigates the gender salary gap within academia in the US and the UK. Since the 1970s, studies on the gender salary gap in the academic labor market have been conducted by (Tuckman et al. 1977; Hasen et al. 1978; Hirsch and Leppel 1982). We summarize below more recent work. Broder (1993), by using a simultaneous equation model, estimates a salary equation using a sample of 362 male and 30 female academic economists in the US. The estimated coefficient for the female dummy indicates that females salaries are between 5% to 8% lower than males', after controlling for experience, productivity, institutional characteristics, and rank. Salary differences are more pronounced for the older cohorts. In addition, when she conducts a salary decomposition using the Oaxaca decomposition method (Oaxaca 1973), she shows that 25% of the raw salary differences could not be explained by the measured characteristics. She also finds that females are more likely to be in lower ranks; however, the difference in rank attainment is not statistically significant.

McNabb and Wass (1997) use data from all British universities for 1975, 1985 and 1992. The samples are very large; however, they lack measures for research output. In an Oaxaca decomposition, the authors obtain a gender salary gap of between 3.6 to 5.5% that could not be explained by differences in age, tenure, faculty affiliation, and rank. The unexplained salary gap would have been 7% larger if rank were not controlled for, suggesting that the
under-representation of females at senior levels significantly contributed to the gender salary differences. Ward (2001) utilizes a sample of 482 male and 241 female from five Scottish universities to investigate the gender salary gap. Her results show that males have a 7.7% salary advantage over females, after controlling for numerous individual characteristics, but excluding rank. When rank is controlled for, the difference is reduced to 3.2% and is no longer statistically significant. When the Oaxaca decomposition is used, 3% of the salary difference remains unexplained, after controlling for numerous characteristics and rank. Rank is found to be the largest contributor to the gender salary gap, accounting for 40% of the raw gender salary gap.

Ginther and Hayes (2003) uses data from the Surveys of Doctorate Recipients in the US. They find a raw gender salary gap of 11.3% in 1993. Most of this gap is explained away when they control for rank, and various personal, institutional and productivity characteristics, leaving only a negligible amount unexplained. However, they find that being female decreases the probability of being promoted to tenure by as much as 6.8%. More recently, Blackaby et al. (2005) estimate the gender pay gap in UK economics departments by using a sample of 291 male and 60 female. They find that females receive 9.4% less than males, after controlling for ethnicity, publications weighted by the quality of the journal, age, education, and various institutional characteristics, but without controlling for rank. When rank is controlled for, the gender salary gap significantly reduces to 5.5%, but it remains statistically significant. Thus, most of the previous studies from the US and the UK found that much of the gender salary differences in academia stems from differences in rank attainment between males and females.

4 Compensation scheme in Japanese universities

In this section we provide background information regarding the compensation scheme in Japanese universities. There are three types of universities in Japan: national, public and
private. National universities are established and funded by the central government. Public universities are established by local governments, and funded by both the local and the central governments. Private universities are established by private entities and are financially self-supporting. The total annual salary of academics includes: monthly salary for 12 months, and, depending on university, bonuses and other allowances ${ }^{5}$. Bonuses are typically provided twice a year, and the total amount can be the equivalent of 4-6 month of salary.

Salary in academia is determined based on a relatively rigid payment scheme, called the salary table. The salary table is set by each university based on negotiations between the university and its own union ${ }^{6}$. There could be a few different salary tables depending on the types of employment contract within a university. For example, there could be one type of salary table for those hired on the typical life-time employment basis, and a different type of table for those hired on a fixed-term basis. Although all types of universities have the freedom to set their own salary table, national universities typically follow the guidelines provided by the National Personnel Authority (NPA) (Jinjiin) ${ }^{7}$. Most private universities set their own salary tables, however, there are some private universities that follow the NPA guidelines.

Table 5 presents an excerpt from a salary table guideline provided by the NPA. The salary table shows how salaries progress depending on rank. A full-time academic usually starts as a lecturer or assistant professor, and then moves up the ladder to the rank of fullprofessor. The salary table contains classes and divisions, where the former refers to rank. Class 5 is a full-professor, class 4 is an associate professor, class 3 is an assistant professor, and class 2 is a lecturer. Each class (rank) contains a number of divisions, or payment scales, with each academic assigned to a division. The assignment is typically decided by

[^4]the university's personnel division run by non-academic staff. The precise criteria that are used to determine the initial division and how each academic progresses through divisions are not specified in the salary table. There is a common belief among academics that the initial division (that is, at hiring) is determined by age, experience, and education level only, and that, each academic progresses one division annually. If this belief is true, then salary would be a deterministic function of age, experience, and education, leaving little room for gender salary differences. However, to date there has been no research investigating whether the belief is indeed true.

In April 2004 national and public universities were 'corporatized' based on the National University Corporation Law enacted in 2003. Prior to this, the salary tables at national and public universities were determined according to public servants' payment schemes, set by the government. Thus, salary tables were the same at every national university in the country, notwithstanding some allowances that varied by university. After the 'corporatization', national and public universities gained the freedom to set their own salary tables. However, as mentioned above, national and public universities typically follow the guidelines provided by the NPA. Their transformation into corporations meant a change in the legal status of academics, by removing their public employee status, and by allowing university management more freedom in setting compensation schemes. However, 'corporatization' did not mean a change in ownership of universities, and, national and public universities are still owned and sponsored by the government.

5 Empirical methodology

Theories of discrimination suggest that female academics may earn lower salary than male academics with comparable productive characteristics. In order to estimate gender salary differences, we control for various productivity characteristics of each academic. Two methods are typically used to empirically investigate the gender salary gap. On the one hand, there
is the Oaxaca-Blinder decomposition (Oaxaca 1973; Blinder 1973), which requires running separate earning regressions for males and females. On the other hand, one can estimate a 'Mincer type' human capital earnings regression (Mincer 1974) for the pooled sample with a female dummy included.

Although the Oaxaca decomposition method has the advantage that it allows all the coefficients to be different for males and females, its application becomes problematic when the number of females is small, as has occurred in previous studies. For example, Blackaby et al. (2005) used the pooled regression method since their sample only contains 60 female. As will be noted in section 6, our data contains 337 academics out of which 58 are female. We, therefore, consider that the number of females is not large enough to apply the Oaxaca decomposition. Thus, we have chosen the pooled regression method for our empirical analysis.

Below is our earning equation:

$$
\begin{equation*}
\log (\text { Annual Salary })=\alpha^{\prime} Z_{i}+\beta_{1}(\text { AssocProf })_{i}+\beta_{2}(\text { FullProf })_{i}+\gamma(\text { Female })_{i}+\epsilon_{i} \tag{1}
\end{equation*}
$$

Z_{i} is the vector of variables that directly affect annual salary (i.e., human capital characteristics and other objective salary determinants). $(\text { (AssocProf })_{i}$ is a dummy variable that takes the value 1 if the academic is an associate professor, 0 otherwise. (FullProf) ${ }_{i}$ is a dummy variable that takes the value 1 if the academic is a full-professor, 0 otherwise. $(\text { Female })_{i}$ takes the value 1 if the academic is a female and 0 otherwise. Thus, the coefficient γ captures the gender salary gap, after controlling for human capital characteristics and other objective salary determinants.

This method of estimation faces at least three econometric challenges. First, human capital variables may be noisy and biased proxies for actual human capital accumulation. For example, education is a widely used human capital proxy. If the actual human capital is lower for females than males at a given level of education, we tend to overestimate the
gender salary gap. In a study of the white-black wage gap, Neal and Johnson (1996) show that education is a biased proxy for human capital, and find that, when unbiased human capital measures such as AFQT^{8} scores are used, the estimated salary gap decreases. In our paper, we tackle this problem by incorporating detailed productivity characteristics for each academic, such as publications and the amount of external grants obtained, in addition to traditional measures of human capital such as education and experience. In fact, one of the benefits of analyzing the academic labor market is that, besides the traditional measures of human capital, various other productivity characteristics can be controlled for, thus minimizing potential biases.

The second potential challenge is that, rank attainment may be affected by discrimination. In such a situation, the female dummy variable does not capture the combined effect of discrimination stemming from both salary discrimination and rank attainment discrimination. One way to mitigate this problem is to estimate the earning equation without the rank variables (McNabb and Wass 1997; Ward 2001; Moore at al. 2007). When the rank variables are not included, the earning equation can be thought of as a reduced-form equation, in which case, the female dummy captures the total effect of discrimination stemming from salary and promotion discrimination combined. Another method is to estimate a salary equation and an ordered logit rank equation, separately, as below:

$$
\begin{equation*}
\text { Salary equation: } \log (\text { AnnualSalary })=\alpha^{\prime} Z_{i}+\beta(\text { Rank })_{i}+\gamma\left({\text { Female })_{i}}+\epsilon_{i}\right. \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { Rank equation: } y_{i}^{*}=\beta^{\prime} Z_{i}+\theta(\text { Female })+\mu_{i} \tag{3}
\end{equation*}
$$

where (Rank) $=1$ if associate professor, 2 if full-professor and 0 if assistant professor and below. y^{*} is a latent variable such that, $(\operatorname{Rank})_{i}=0$ if $y_{i}^{*}<c_{1},(\operatorname{Rank})_{i}=1$ if $c_{1} \leq y_{i}^{*}<c_{2}$, and $(\operatorname{Rank})_{i}=2$ if $y_{i}^{*} \geq c_{2}$. Therefore, the total salary gap stemming from discrimination in

[^5]salary and promotion combined can be written as:
\[

$$
\begin{equation*}
\text { Total gender salary gap }=\gamma+\beta[P(\text { Rank }=2 \mid \text { Female })-P(\text { Rank }=2 \mid \text { Male })] \tag{4}
\end{equation*}
$$

\]

where $P($ Rank $=2 \mid$ Male $)$ is the probability that a respondent is a full-professor given that the respondent is a male. $P($ Rank $=2 \mid$ Female $)$ is defined in a similar manner. These probabilities can be computed at the sample average of all the explanatory variables. β is the coefficient for the rank variable in equation (2) above. Thus, if females have lower probability of being promoted to full-professor, the second term of (4) will capture the drop in salary due to the lower rank attainment for females. This method has the advantage of being able to directly estimate the difference in promotion probability. In this study, however, we use both methods described above.

Third, self-selection into the academic labor market might be a potential source of bias in the female coefficient. Heckman (1998) shows that the estimated wage gap between blacks and whites reduced in the 1990s, not because discrimination disappeared, but because a considerable number of blacks, who potentially earn lower wages, dropped out of the labor force. Similarly, in our case, if female graduates whose potential salary is lower in academia decide not to enter the academic labor market, we would underestimate the potential gender salary gap. The available techniques to correct for selection bias, such as the Heckit model, require information about the graduates who did not join academia. Unfortunately, we do not have such data. Thus, direct elimination of selection bias is not possible in our case ${ }^{9}$. However, we investigate whether selection bias is a problem by utilizing statistics for male and female PhD graduates in Japan over the period 1969 to 2007^{10}.

[^6]
6 Data

Data utilized in this project have been obtained from a survey we administered via a postal questionnaire ${ }^{11}$. Past studies used publicly available data (Broder 1993; McNab and Wass 1997; Ginther 2004; Blackby et al. 2005) or undertook independent surveys (Ward 2001). In Japan, salary information is confidential and there are no national or private statistics on academics collected regularly. Therefore, we undertook a mail survey in order to collect data. Our survey method is presented below.

First, from the website of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) we obtained an official list of all four-year universities in Japan. The list contained 747 universities: 87 national, 76 public and 584 private universities. We accessed each university website provided in the list ${ }^{12}$ in order to collect the names of academics in economics and economics-related departments ${ }^{13}$. Due to the facts that some universities do not list faculty names and some universities do not have economics departments, we were able to collect only 4353 names from only 132 universities. Many Japanese economics departments also employ faculty specializing in language education. We eliminated such faculty where possible. In addition, we excluded universities that accept only female students.

Next, from the 4353 collected names, we selected 1863 academics and mailed them questionnaires directly. Ideally, the selection method should be random. However, this could have led to a very small female sample. In order to increase the number of female observations, we selected all the female-sounding names (287 names). Nonetheless, the rest of the selected academics (1576 names) are randomly chosen. Questionnaires were sent from April to June 2008 and participants could reply either by mail or online. Two remainders

[^7]were sent by mail in July and August, and an additional reminder was sent to approximately 600 academics by email. At the end of our survey period, we received 363 responses (252 by mail and 111 online). Thus, we achieved a rate of response of 19.5%. This response rate is not too high but not too low either, as compared to other previous studies that used similar mail surveys of academics; for example, Moore et al. (2007) achieved a response rate of 13%, while Ward (2001) obtained a response rate of 30%. Our sample contains 299 male and 64 female; however, due to some incomplete responses, the usable sample is 337 (of which 58 are female). Our female sample is comparable in size with female samples previously used in the literature. Broder (1993) used a sample with 30 female and 362 male; Ginther (2004) had 90 female in her sample, while Blackaby et al. (2005) had a sample with 60 female and 291 male.

The percentage of females in our sample is 17.2%. Based on the statistics provided by MEXT ${ }^{14}$ Statistics of School Education (Gakkou Kihon Chousa), the percentage of females in economics departments in Japan was 12.6% in 2007^{15}. Thus, we over-sampled females. Oversampling of females was purposely done in order to increase the precision of estimates. In the labor market discrimination literature, over-sampling of minority groups is not uncommon. For example, Neal and Johnson (1996) use data from the NSLY ${ }^{16}$ which over-samples blacks. Moreover, Monk and Robinson (2000) in a study of gender and racial earning differences in academic markets over-sampled females. We thus believe that over-sampling of females does not affect the relevance of our results. Nevertheless, we advise caution when generalizing results.

One may be concerned with respondent biases. For example, if only those who identified with the purpose of analyzing gender inequalities replied, our estimates would be biased. However, we believe that such a bias does not exist in our sample, since in our cover letter,

[^8]we did not emphasize that the data will be used only to analyze gender salary differences. Moreover, 96.44% of the respondents (94.83% female respondents) replied that they did not feel discriminated against in their salaries. Thus, there is no reason to believe that our sample is affected by respondent biases.

One may be also concerned with the over-representation of full-professors due to nonrandom responses, since in typical mail surveys of academics, such a problem is not uncommon (Ward 2001; Blackaby et al. 2005). In our sample, 63% of respondents are fullprofessors. However, according to MEXT Statistics of School Education (Gakkou Kihon Chousa) data, in 2007, 60% of academics in economics departments in Japan were fullprofessors. Thus, the difference is relatively minor for our sample. Finally, we under-sampled private universities because the MEXT does not provide website links for a significant number of private universities. According to the MEXT Statistics of School Education (Gakkou Kihon Chousa), 73% of academic economists work in private universities while only 59% of our sample is in private universities.

$7 \quad$ Variables and descriptive statistics

Table 1 shows definitions of our variables. The dependent variable is the logarithm of the total annual salary which includes the 12-month salary plus bonuses and allowances from the current institution. Other sources of income, such as money earned from other institutions or consulting fees are not included. We have a great number of control variables and classified them according to four characteristics: personal, job, institutional and human capital.

Personal characteristics Becker (1991) suggests that married adults posses more human capital than unmarried adults. We include a dummy variable for married respondents in order to control for the effect of marital status on salary. Ward (2001) finds that the presence of young children increases salary by 8%. We, therefore, include the number of children under

6 years old in order to control for the effect of the presence of young children on salary ${ }^{17}$.

Job characteristics (AssocProf) is a variable that takes the value 1 if the respondent is an associate professor, 0 otherwise; (FullProf) is a variable that takes the value 1 if the respondent is a full-professor, 0 otherwise. The excluded category includes assistant professors and lecturers. Japanese universities typically hire academics on a lifetime employment basis (i.e., no term-specified contracts). However, since 1997, with the enactment of the Legislation of the Fixed-Term System for Faculty Members, the fixed-term contract has been introduced. In order to control for the effect of fixed-term employment on salary, we include a dummy variable for the fixed-term contract.

Few studies control for the effect of teaching load on salary. Taylor et al. (2006) reports that time spent on teaching has a negative effect on research productivity. In order to control for the possibility that teaching load has a direct impact on salary, we control for the total number of courses taught during the previous year. This variable can also be thought of as capturing institutional differences as well, since top universities are expected to be more research-oriented, thus requiring less teaching from their academics. We also control for the number of courses taught for the first and second time, since these courses may take longer preparation time. According to McDowell et al. (2001) and Koplin and Singell Jr. (1996), females economists usually prefer fields like labor economics as opposed to fields like theory or quantitative methods. In fact, our sample also suggests that female academics are most represented in labor economics. In order to separate the effect of field choice from the effect of being female, we include a dummy variable for labor specialization ${ }^{18}$.

We also control for being in an administrative position (e.g., the Dean of department or the Chair of the university), since holding such positions may increase the salary. Survey

[^9]participants were asked to report the percentage of their time allocated for administrative duties. The variable (Admin) takes the value 1 if the respondent spends more than 50% of his/her working time on administrative duties. This variable is a proxy for holding administrative positions. Finally, we control for cohort effects for those who entered the academic labor market in the 1980s, the 1990s, between 2000-2003 and 2004 onward. The cohort that entered academia from 2004 onward is expected to capture the possible effects of 2004 national and public university 'corporatization'. The 2000-2003 cohort dummy captures the possible effect of the 2000 Action Plan (see Introduction) that stipulates that national universities should increase the number of female academics. In the 1990s there is a significant convergence in the percentage of male and female PhD graduates joining the academia (see Figure 2B). The 1990s cohort dummy captures the effects of possible changes in the labour market conditions that caused such a convergence. The cohort dummy for the 1980s capture the effects of specific labor market conditions at that time, for example, the enactment of the 1985 Law of Equal Employment Opportunity of Men and Women.

Institutional characteristics Estimated gender salary differences could arise if females are over-represented in universities with lower remuneration. Thus, we control for various institutional characteristics. We include dummy variables for private and public universities, with national universities being the reference group. We also include a dummy variable for business department. To proxy for the quality of the department, as in other studies (Taylor et al., 2006), we use a dummy variable that takes the value 1 if the department is offering a PhD degree.

The variable (IntGrant) shows the amount of internal research grant received from the current institution in the previous academic year. According to our data, 80% of the respondents said that each academic in their department receives the same amount of internal grant. Thus, the amount of internal grant can be viewed as either showing the financial
status of the university, or its research orientation. We also consider a special competitive grant called Center of Excellence grant (COE). (COE) is the variable showing the amount of research grant each respondent received from the COE grant. COE grants are provided by MEXT ${ }^{19}$ and offer funds at the department level. According to Arimoto (2007), in 2006, 51% of selected projects belonged to the top ten national universities. Thus, we expect that this type of grant shows the quality of the department and of the university.

Human capital characteristics We control for standard human capital measures such as experience and education. The variable (Seniority) is the total number of years of experience at the current university; (Experience) is the total number of years of experience as an academic. We also include non-academic experience measured as the total number of years worked full-time outside academia. We also included the squared terms of (Seniority), (Experience) and non-academic experience, in order to capture that the rate of return on human capital continues at a diminishing rate. In order to control for the effect of career breaks on salary, we include a dummy variable that takes the value 1 if the academic took a leave during his/her academic career. This variable would capture the effect of human capital depreciation due to inactivity. The variable (PhD) is the dummy variable indicating that the respondent has a PhD degree. This variable captures the effect of education on salary. In order to capture the differences in the PhD programs from which the respondents graduated, we also include an additional dummy variable for a PhD degree obtained overseas.

To control for additional differences in productivity, we include the amount of competitive external grant that an academic received in the previous year ${ }^{20}$, and the number of publications. The number of refereed articles is the most accepted measure of scholarly research output (Taylor et al., 2006). Previous literature found that the returns on salary

[^10]from non-refereed publications are quite low (Oster and Hamermesh 1998; Moore et al. 2007). However, since Japanese academics in our sample produce a considerable amount of work other than refereed articles, we control for various types of publications. Publications are classified according to their types: referred single authored articles, refereed co-authored articles, working papers, single authored books, co-authored books, books edited, book chapters and textbooks. Publications are reported for the whole career. In the prior literature, the quality of research output is controlled for by distinguishing articles published in top journals. In our survey, however, in order to preserve the anonymity of the respondents, we did not ask the name of the journal of publication. Therefore, we cannot directly adjust for the quality of the publication. However, we asked the survey participants to report the number of publications according to the location of the publisher. Thus, each type of publication is further divided into subtypes depending on whether it was published in Japan or in the US/Europe. We expect publications in the US or Europe to be more cited than those published in Japan, since these are published mostly in Japanese. Thus, we can capture potential differences in the impact of the research output.

Descriptive statistics are presented in Table 2. The average annual salary is 10.5 million yen for males and 8.8 million yen for females. The average age is 50.7 for males and 43.3 for females. The average seniority is 13.5 years for males and 8.6 for females. The average experience is 18.3 years for males and 10.9 for females. The average non-academic experience for both males and females is about 3 years. 67% of males and 43% of females are fullprofessor, while 27% of males and 43% of females are associate professors. In sum, males are older on average, have more experience, and obtain higher average salary.

Only 2% of males took career breaks, while as much as 12% of the females did so. Females are more likely than males to be found in private universities (66% of females and 57% of males). It appears that there are no significant differences between males and females in terms of the highest educational achievements; 65% of males and 64% of females have PhD
degrees. However, the number of males with a PhD degree from overseas is slightly higher than that of females (11% of males and 7% of females). The greatest number of females was hired after the year 2000. Figure (1) plots the salary profiles according to seniority and experience. Both females' seniority-salary profile and experience-salary profile lie below that of males'.

8 Estimation results

8.1 Salary equation

Table 3 reports the OLS results for four model specifications, each using different publication record measurements. For each model we present separate results, with rank variables included and excluded. OLS 1 includes the most detailed publication record. When rank variables are included, the coefficient for the female dummy is -0.071 and it is statistically significant at the 1% significance level, indicating that females earn 7% less than males, after controlling for detailed personal, job, institutional and human capital characteristics.

The effects of other control variables are also of interest. Age appears to be a significant determinant of salary. An increase in age by one would increase salary by 1.6% at the age of 40. Married academics earn, on average, 5% more than those not married. The number of children under 6 years old has a positive effect on salary. Salary would increase by 3% for each additional child in this age break. The past literature tends to find positive effects of children for the male sample (Bellas and Toutkoushian 1999), while insignificant effects for the female sample (Ward 2001; Barbezat 1987), suggesting that males with children might be acting as breadwinners. Our positive coefficient for children might suggest that the effect of children for the male sample is dominating the result. Indeed, when we summarize the salary by the presence of young children (under 6 years old) for respondents younger than 40 years old, males with young children earn more than males without young children (8.1 million yen and 7 million yen respectively); while females with young children earn slightly
less than females without young children (7.1 million yen and 7.4 million yen respectively).
Full-professor rank has a positive and statistically significant influence on salary. The coefficient of 0.18 suggests that there is an 18% salary gap between assistant professors and full-professors. The coefficient for (AssocProf) is positive, indicating a 6% salary gap between associate professors and assistant professors; however, the coefficient is not statistically significant. The coefficient for (FixTerm) is statistically significant at the 1% significance level. The result indicates that the salary would be 24% lower if the contract is of limited duration. The effect of the total number of courses is negative and marginally significant. Past literature found a negative impact of teaching on research productivity (Taylor et al. 2006). Our results suggest that teaching load may have a direct and negative impact on salary. Alternatively, we can interpret the result as showing that teaching-oriented universities are paying less. Academics who are specialized in labor economics have a salary premium of about 7%. As mentioned before, in our sample, the highest concentration of females is in the labor field. One may expect that females might be concentrated in a lower paying specialization, however, in our sample, the labor field enjoys a higher salary. We observe no significant cohort effects.

The coefficient for (PrivUniv) is positive and highly significant, showing a salary premium of 16% for those working in private universities. There is also a salary premium of 7% for those who work in PhD-granting departments. This premium could stem from greater outside funding for PhD-granting departments as suggested by Koplin and Singell Jr. (1996), or due to unobserved differences in the quality of academics who work in such departments. The amount of internal grant and the COE grant do not have statistically significant effects on salary.

Now let us turn our attention to the effects of human capital characteristics on salary. The coefficients for (Seniority) and its square are small and statistically insignificant. The estimated coefficients suggest that an increase in seniority of one year would increase salary
by only 0.3%, evaluated at seniority equals to 10 . The small effect of seniority is similar to Ransom's (1993) findings ${ }^{21}$ that assert that the small effect of seniority on salary is the result of monopsonistic power universities have in the academic labor market. The effects of both academic and non-academic experience are insignificant. Career break variable has a negative coefficient, but it is statistically insignificant. Nonetheless, this variable has a significant impact on the estimated coefficient for females. Although not reported here, exclusion of this variable would increase the gender salary gap from 7.1% to 7.8%.

The coefficient for (PhD) is positive (0.023), but statistically insignificant. In Japan, until recently, a PhD was granted as a life-time work achievement rather than at the completion of a doctoral dissertation. Therefore, not having a PhD does not indicate lower human capital. However, a PhD obtained abroad seems to have a sizable effect on salary. There is a salary premium of about 5.6% for a doctorate obtained outside Japan. The amount of external grant has a significant coefficient ${ }^{22}$. The estimated coefficient indicates that earning a one million yen grant is associated with an increase in salary of 1% or about 100 thousand yen evaluated at the mean salary ${ }^{23}$.

All the publication variables have insignificant effects on salary, except for book chapters published in the US and Europe. In virtually all of the previous studies, the number of publications, especially refereed articles, is found to be a significant determinant of salary. In our paper, the results are different and appear to confirm the common belief among Japanese academic economists that publications are not determinants of salary, since salary is determined by the rigid salary table ${ }^{24}$. However, there could be other factors that influenced

[^11]our results for the publication variables. For example, there could be error-in-variables endogeneity in publication measures ${ }^{25}$.

When OLS 1 is estimated without controlling for rank variables, the female coefficient decreases only slightly in absolute value, from -0.071 to -0.069 , and remains statistically significant at the 1% significance level. Thus, the gender salary gap is almost unaffected by exclusion of rank variables, indicating that there is a large salary gap within each rank, but there are no significant differences in rank attainment between genders. Most of the prior studies from the US and the UK found that much of the gender salary differences stems from the fact that female academics are over-represented in lower ranks (Ward 2001; Ginther 2004), and that there is a little salary gap within each rank. Thus, our results show the entirely opposite pattern. Most of the coefficients for other variables appear to be unaffected by the exclusion of rank variables as well.

In order to study the robustness of the results to our measures of research output, OLS 2 uses a less detailed publication record. In this specification, the publication record is not classified according to the location of the publisher. The coefficient for the female dummy decreases slightly in absolute value, from -0.071 to -0.068 , but remains statistically significant at the 1% significance level, for the model with rank variables included. When rank variables are excluded, the coefficient is -0.065 and significant. None of the coefficients for the measures of publications are significant, and, virtually all the other coefficients are unaffected by the change in the definitions of measures of the publication record.

OLS 3 employs more aggregated measures of publications. In OLS 3 we do not distin-

[^12]guish between single authored and co-authored publications as we did in OLS 2. However, before adding the single and co-authored publications in order to obtain the total number of publications, we divide the number of co-authored publications by 2 , assuming that the number of co-authors is usually two. When rank variables are included, the coefficient for female is -0.069 and is highly statistically significant. When rank variables are excluded, the coefficient is -0.067 and is also highly significant. The publications variables do not appear to have a significant effect on salary, on either model, with or without rank variables. The other coefficients are qualitatively and quantitatively similar to OLS 1 and OLS 2.

Finally, OLS 4 uses only the total number of refereed articles (TotRefArticles) as measure of publication record. This model is relevant, since refereed articles have been considered the most accepted measure of research output in the prior literature. The female coefficient is - 0.07 when rank variables are included, and it is statistically significant at the 1% significance level. The coefficient for refereed articles is small (0.0003) and statistically insignificant. When rank variables are excluded, the female coefficient is -0.069 , and still highly significant. There are no noticeable differences in the coefficients between this model and the previous models.

In sum, all models indicate that there is a significant gender salary gap within each rank. The estimated coefficient for female ranges between -0.068 to -0.071 , after controlling for detailed personal, job, institutional, human capital characteristics and rank. The coefficient for female is statistically significant in all models. When rank variables are excluded, the female coefficient decreases only slightly in absolute value, ranging between -0.065 to -0.070, but it remains statistically significant in all models. Thus, our results indicate that there is a significant gender salary gap within each rank, but there is no significant gender difference in rank attainment.

8.1.1 Additional results

We would like to discuss below results not reported in Table 3. Figure 1 shows that there is a greater gender gap later in the career, after about 25 years of experience. Such situation could have been caused either by (i) the presence of cohort effects or (ii) because the gender salary gap widens later in the career. In order to check the latter possibility, we included in OLS 1 an interaction term (Female $*$ Dummy(Experience $\geq 25)$). The coefficient for the interaction term is negative, but not statistically significant. The coefficient for the female dummy drops only slightly in magnitude to $-0.067(\mathrm{p}$-value $=0.015)$. Therefore, we do not find evidence that the gender salary gap widens with experience.

In order to see if the gender salary gap decreases or increases with new cohorts, we included interaction terms between female and cohort dummies. Since the majority of females in our sample entered the academia after 2000 (49% of females), we include in OLS 1 interactions between female, and (Cohort00-03) and (Cohort04). The coefficients for both interaction terms are positive, but insignificant; $0.005(\mathrm{p}$-value $=0.93)$ and $0.04(\mathrm{p}$-value $=0.57)$, respectively. Thus, we did not find evidence that the gender gap is decreasing with new cohorts.

We also ran OLS 1 separately for private university and national university samples. The female coefficient is $-0.05(\mathrm{p}$-value $=0.23)$ for the private university sample; and -0.071 ($\mathrm{p}-$ value $=0.14$) for the national university sample. Although the gender salary gap appears to be smaller for private universities, the large standard errors make the comparison difficult.

Blackaby et al. (2005) show that the number of outside job offers explains the gender salary gap for the UK academic economists. We do not have information on outside job offers; however, we do have information regarding the number of universities each academic worked at. We thus include a variable to control for the number of previous academic jobs. The average number of universities academics in our sample previously worked at (excluding
the current university) is 0.68 for males and 0.53 for females. The coefficient for this variable is insignificant, $0.02(\mathrm{p}$-value $=0.86)$, and the coefficient for the female dummy does not change appreciably in value and remains significant, 0.071 (p -value $=0.01$).

8.2 Rank attainment equation

We estimate an ordered logit rank attainment model using the same specification as in OLS 1 of the salary equation. Table 4 shows the results. Contrary to our expectations, the coefficient for the female dummy is positive (0.092), indicating that females are 0.2% more likely than males to be a full-professor (see the marginal effect in Table 4). However, the coefficient is insignificant and the effect is small. Thus, there is almost no difference in rank attainment between males and females. Despite the common belief that promotion is a deterministic function of age and experience, the coefficients for age and experience are not statistically significant. Having a PhD would increase the probability of being a professor by 6%, holding all other characteristics constant. The coefficient for (FixTerm) is negative and significant. Most of the coefficients for publications are insignificant, however, working papers published in Japan and co-authored books published in Japan have positive and statistically significant effects on rank attainment.

The logit estimation results showing that age and experience are not significant determinants of promotion are puzzling. As we are concerned that the results might have been affected by our choice of model, we also estimate the same rank equation by using OLS, the second column in Table 4 showing those results. The female coefficient is small and statistically insignificant (0.02), indicating that there is little difference in rank attainment between genders. However, age and academic experience appear to be significant determinants of the rank attainment.

Although the results show that there is not much of a gender difference in rank attainment, it is still useful to compute the total gender salary gap defined in equation (4). Based
on the results of the ordered rank equation, the marginal effect is $P($ Rank $=2 \mid$ Female $)$ $P($ Rank $=2 \mid$ Male $)=0.002$. The coefficient for rank, β, is 0.010 and it is reported in the OLS 5 in Table 3. Thus, the total salary gap is $-0.071+0.10 \times 0.002=-0.0708$. Since, according to our results, females are more likely than males to be full-professors, the gender salary gap reduces when we combine gender salary differences with promotion differences. However, because the differences in rank attainment are small, virtually the entire salary gap can be attributed to the salary gap within each rank.

9 Sample selection bias

Self-selection into the academic labor market might be a potential source of bias in the female coefficient. Since we only observe a sample of those working in academia, we cannot directly control for selection bias by using existing techniques such as the Heckit model. Therefore, in this section we attempt to discuss potential directions of the biases by utilizing statistics of PhD graduates in Japan for the period 1969-2007. MEXT Statistics of School Education(Gakkou Kihon Chousa) provide basic statistics of PhD graduates in social sciences ${ }^{26}$.

Figure 2-A summarizes the number of PhD graduates in social sciences over the period 1969-2007. Figure 2-B summarizes the percentage of PhD graduates in social sciences who joined academia over the period $1969-2007^{27}$. Figure 2-A shows that, until 1990, there was a very small number of females who graduated from PhD programs in social sciences ${ }^{28}$ (until 1990, the average numbers of males and females are 184.36 and 8.77 , respectively). As for the percentage of graduates hired by universities, the percentage is much higher for males than females until 1990 (average percentages for males and females are 76.8 and 34.0,

[^13]respectively). However, the percentages are similar after the 1990s. The average percentages for males and females after 1990 are 64.76 and 63.55 , respectively. The lower number of females joining academia before the 1990s potentially causes sample selection bias in our estimation. If females who potentially faced lower salary in the academic labor market decided not to join academia, then females in the lower tail of the salary distribution are missing from our sample. This could have caused an underestimation of the gender salary gap. Alternatively, employers might have applied stricter hiring criteria for females prior to 1990, which in turn could have led to fewer females joining academia. Therefore, again, females in the lower tail of the salary distribution are potentially missing from our sample, thus, causing underestimation of the gender salary gap. To conclude, although our results provide evidence that females earn about a 7% lower salary than males, this salary gap would be wider if we control for bias due to sample selection.

10 Discussions

After controlling for detailed personal, job, institutional, human capital characteristics and rank, we find that female academic economists earn 7% lower salary than comparable males. Estimations of the salary equations reveal that the coefficient for the female dummy is almost the same, regardless of whether rank variables are included or excluded. The ordered logit estimation of the rank equation reveals that there are no gender differences in rank attainment. Therefore, in our sample, there is a sizable gender salary gap within each rank, but there are no gender rank attainment differences. Most of the prior studies from the US and the UK found that much of the gender salary difference stems from the fact that female academics are over-represented in the lower ranks, and that there is little salary gap within each rank. Therefore, our results are entirely opposite the patterns of gender salary gaps in the US and the UK.

While, the precise underlying causes for why such a pattern emerges within Japanese
economics departments require further investigation, we offer the following two possible explanations. First, such a pattern might be caused by the institutional setting of Japanese universities. In Japanese universities, salary is determined by the personnel division which consists of non-academic staff, while promotion decisions are typically made at the department level by faculty members. Therefore, those determining salaries are likely to have less accurate information about academic productivity. For example, the personnel division may not receive the full set of information about academic performance. Moreover, as the personnel divisions consist of non-academics, they may not be capable of assessing some aspects of productivity such as the quality of publications. As Arrow (1973) argues, when performance is difficult to asses, prejudicial beliefs about females' productivity, if these exit, could cause gender salary gap.

Moreover, the problem of noise in performance assessment may be more severe for female academics. For example, because personal division staff may not be capable of assessing academic performance accurately, information about ones academics productivity transmitted through word-of-mouth may affect the assessment. Since females are relatively new in the academic labor market, lack of social network within the university may prevent females' academics achievement to be properly recognized. As Aigner and Cain (1977) predicts, greater noise in the assessment of females' productivity may cause statistical discrimination against females.

In contrast, promotion may be determined based on more accurate information, since it is decided at the department level, by fellow academics. Since the accuracy of information is a central issue in the theory of statistical discrimination, statistical discrimination or prejudicial beliefs about female academic productivity might have manifested only in terms of gender salary difference in our sample. Thus, the pattern we observe - in which there is a gender salary gap but there is no gender gap in rank attainment - might have been caused by the institutional setting that governs salary and promotion determination.

Second, in Japan, academic salary information is seldom public knowledge. Therefore, gender salary differences in academia have seldom been scrutinized. On the other hand, rank attainment gap, after controlling for productivity, can be more easily detected by fellow academics, since rank attainment is usually public information, at least in the academic community, and information regarding the research output of fellow academics is relatively easy to find. In such circumstances, if taste-based discrimination exists, it is more likely to manifest as a gender salary gap, where discrimination is hard to detect, than as a rank attainment gap where gender differences can be visible.

Although, we have provided two possible explanations for why salary determination is more discriminatory than promotion decisions within Japanese academia, these explanations do not indicate why promotion decisions are fairer within Japan as opposed to the UK or the US. Here we suggest one possible answer to this question. The lack of gender promotion difference within Japanese academia could be a manifestation of a possible seniority-based promotion system. Based on various conversations with academics, there is a common belief that, not only salary, but also promotion is based on seniority, age, and education, thus leaving little room for gender promotion differences. In fact, the OLS estimation of the rank equation (Table 4) suggests that there may be a seniority-based system at work. Besides institutional characteristics, education level, and employment type ${ }^{29}$, age and total experience are the only highly statistically significant determinants of rank. One might then raise the question of why there is not such a similar seniority system in the case of salary. The answer to such a question could be that, salary is seldom scrutinized while promotion can be more easily scrutinized; thus, discrimination could more easily manifest in salary than in promotion.

[^14]
11 Conclusion

By using a data set of academic economists from Japanese universities, we have conducted the first detailed study of the gender salary gap within Japanese academia. Our data contain detailed information about personal, job, institutional and human capital characteristics. Despite the common belief among Japanese economists that there cannot be a gender salary gap within Japanese academia, our empirical results show that females academic economists receive on average 7% less salary than males, after controlling for detailed personal, job, institutional, human capital characteristics, and rank. The coefficient for the female dummy is almost the same, regardless of whether rank variables are included or excluded in the salary equation, suggesting that there is a significant gender salary gap within each rank, but there are no differences in rank attainment. These results are interesting as they contrast with the results of many previous studies in the US and the UK, which suggest that significant gender salary differences stem from gender rank attainment differences and that the salary gap disappears once rank is included in the salary equation. We offer two possible explanations for why our results are different. First, our results may stem from the fact that in Japan, salary is decided by personnel divisions consisting of non-academics, while promotion decisions are made at the department level. We argued that this type of institutional setting could cause statistical discrimination that manifests in terms of gender salary differences rather than in gender promotion differences. Second, because gender salary differences within Japanese academia have seldom been scrutinized, taste-based discrimination is also likely to manifest through gender salary differences rather than promotion differences. Other important results show that fixed-term employment is associated with 24% lower annual salary, while private university offers a salary premium of 16%. Refereed articles, the most commonly accepted measures of productivity, have no statistically significant effect on salary.

References

[1] Aigner, Denis, J. and Cain, Glen, G., 1977, 'Statistical Theories of Discrimination in Labor Markets", Industrial and Labor Relations Review, 30(2), pp. 175-187
[2] Arimoto, Akira, 2007, "The Competitive Research Environment in the Japanese Context", Paper Presented at the Regional Seminar: 'Competition, Cooperation and Change in the Academic Profession: Shaping Higher Education's Contribution to Knowledge and Research" in Hangzhou, China, UNESCO Forum on Higher Education, Research and Knowledge
[3] Arrow, Kenneth, 1971, "The Theory of Discrimination", Working Papers No. 30A, Industrial Relation Section, Princeton University
[4] Arrow, Kenneth, 1973, "The Theory of Discrimination", in O. A. Ashenfelter and A. Rees, eds., Discrimination in Labor Markets, Princeton University Press, pp. 3-33
[5] Barbezat, Debra, 1987, "Salary Differentials by Sex in the Academic Labor Market", Journal of Human Resources, 22(3), pp. 422-428
[6] Becker, Gary, S., 1971, "The Economics of Discrimination", Second Edition, The University of Chicago Press
[7] Becker, Gary, S., 1991, "A Treatise on the Family", Enlarged Edition, Harvard University Press
[8] Bellas, Marcia, L. and Toutkoushian, Robert, K., 1999, "Faculty Time Allocation and Research Productivity: Gender, Race and Family Effects", Review of Higher Education, 22(4), pp. 367-390
[9] Black, Dan, A., 1995, "Discrimination in an Equilibrium Search Model", Journal of Labor Economics, 13(2), pp. 309-334
[10] Blackaby, David; Booth, Alison, L. and Frank, Jeff, 2005, "Outside Offers and the Gender Pay Gap: Empirical Evidence from the UK Academic Labor Market", Economic Journal, 115(February), pp. F81-107
[11] Blinder, Alan, 1973, "Wage Discrimination: Reduced Form and Structural Estimates", Journal of Human Resources, 8(4), pp. 436-455
[12] Border, Ivy, E., 1993, "Professional Achievements and Gender Differences among Academic Economists", Economic Inquiry 31, pp. 116-127
[13] Ginther, Donna K and Hayes, Kathy J. 2003, 'Gender Differences in Salary and Promotion for the Faculty in the Humanities 1977-95", Journal of Human Resources 38(1), pp. 34-73
[14] Goldberg, Matthew, S., 1982, "Discrimination, Nepotism, and Long-Run Wage Differentials", The Quarterly Journal of Labor Economics, May, pp. 308-319
[15] Hansen, Lee, W.; Weisbrod, Burton, A., Strauss, Robert P., 1978, "Modeling the Earnings and Research Productivity of Academic Economists", Journal of Political Economy, 86(4), pp. 729-741
[16] Hirsch, Barry, T. and Leppel, Karen, 1982, "Sex Discrimination in Faculty Salaries: Evidence from a Historically Women's University", American Economic Review, 74(2), pp. 829-835
[17] Heckman, James, J., 1998, "Detecting Discrimination", The Journal of Economic Perspectives, 12(2), pp. 101-116
[18] Koplin Van, W. and Singell Jr., Larry D., 1996, "The Gender Composition and Scholarly Performance of Economics Departments: A Test for Employment Discrimination", Industrial and Labor Relations Review 49(3), pp. 408-423
[19] Lundberg, Shelly. J., and Startz, R., 1983, "Private Discrimination and Social Intervention in Competitive Labor Market", The American Economic Review, 73(3), pp. 340-347
[20] McDowell, John. M.; Singell Jr., Larry, D., and Jr. Ziliak, James, P., 2001, "Gender and Promotion in the Economics Profession", Industrial and Labor Relations Review 54 (2), pp. 224-244
[21] McNabb, Robert and Wass, Victoria, 1997, "Male - Female Salary Differentials in British Universities", Oxford Economic Papers, New Series 49 (3), pp. 328-343
[22] Mincer, Jacob, 1974, "Schooling, Experience, and Earnings", National Bureau of Economic Research, New York, Columbia University Press
[23] Monks and Robinson, 2000, 'Gender and Racial Earnings Differentials in Academic Labor Markets", Economic Inquiry, 38(4) pp. 662-671
[24] Moore, William J.; Newman, Robert J. and Terrell, Dek, 2007, "Academic Pay in the United Kingdom and the United States: The Differential Return to Productivity and the Lifetime Earnings Gap", Southern Economic Journal, 73(3), pp. 717-732
[25] Neal, Derek A. and Johnson, William, R., 1996, "The Role of Premarket Factors in Black-White Wage Differences", The Journal of Political Economy, 104(5), pp. 869-895
[26] Oaxaca, Ronald, L., 1973, "Male-Female Wage Differentials in Urban Labor Markets", International Economic Review, 14(3), pp. 693-709
[27] Oster, Sharon M. and Hamermesh, Daniel, S., 1998, "Aging and Productivity among Economists", Review of Economics and Statistics, 80(1), pp. 154-156
[28] Phelps, Edmund, S., 1972, "The Statistical Theory of Racism and Sexism", The American Economic Review, 62(4), pp. 659-661
[29] Rosen, Asa, 2003,"Search, Bargaining, and Employer Discrimination", Journal of Labor Economics, 21(4), pp. 807-829
[30] Taylor, Susan, W., Fender, Blakely, F. and Burke, Kimberley, G., 2006, "Unraveling the Academic Productivity of Economists: The Opportunity Costs of Teaching and Service", Southern Economic Journal, 72(4), pp. 846-859
[31] Tuckman, Howard, P.; Gapinsky, James, P., and Hagemann, Robert, P., 1977, "Faculty Skills and the Salary Structure in Academe: A Market Perspective", American Economic Review, 67(4), pp.692-702
[32] Ward, Melanie, E., 2001, "The Gender Salary Gap in British Academia", Applied Economics, 33, pp. 1669-1681

Figure 1: Salary Profiles

Figure 2: PhD Graduates-Statistics
Figure A: \# of PhD graduates in social science

Source: Based on statistics provided by the MEXT Statistics of School Education (Gakkou Kihon Chousa).

Table 1: Definitions of Variables
Name Definition

Personal characteristics

Female
Age
Married
Kids

Job characteristics

Rank
AssocProf
FullProf
FixTerm
Courses
Cours1st
Cours2nd
Labor
FieldMiss
Admin
Cohort80
Cohort90
Cohort00-03
Cohort04

1 if female, 0 if male
Age of respondent in 2008
1 if ever married, 0 otherwise
Number of children under 6 years old

1 if associate professor, 2 if full-professor, 0 otherwise
1 if associate professor, 0 otherwise
1 if full-professor, 0 otherwise
1 if on fixed employment contract, 0 if on non-limited term
Total number of courses the respondent taught in 2008-2009
Number of courses taught for the first time in 2008-2009
Number of courses taught for the second time in 2008-2009
1 if specialized in labor economics, 0 otherwise
1 if field of specialization is missing observation
1 if respondent spends more than 50% of
working time on administration duties, 0 otherwise
1 if initially hired as academic in the $80 \mathrm{~s}, 0$ otherwise
1 if initially hired as academic in the $90 \mathrm{~s}, 0$ otherwise
1 if initially hired as academic between 2000-2003
1 if initially hired as academic from 2004 onward, 0 otherwise

Institutional characteristics

PrivUniv
PubUniv
BussDep
PhDOffer
IntGrant(in 10,000 yen)
IntGrMiss
COE(in 10,000 yen)
COEMiss

1 if academic works in private university, 0 otherwise
1 if academic works in public university, 0 otherwise
1 if academic works in business department, 0 otherwise
1 if the department offers PhD or doctorate (DSc. and DEc.)
Amount of research grant received from the department in 2007 1 if the amount of internal grant is missing observation Individual amount of 2007 COE (Center of excellence) grant 1 , if the amount of COE is missing

Human capital characteristics

Seniority
Experience
NonAExp
CarBreak
PhD
PhDAbroad
ExtGrant(in 10,000 yen)
ExtGrantMiss
PubMiss

Number of years worked at current employer
Total number of years worked as academic
Total number of years worked as non-academic
1 if ever took career break, 0 otherwise
1 if holds a PhD, DSc. or DEc.
1 if holds a PhD, DSc. or DEc. from outside Japan
Amount of external grant from outside the university in 2007 (the amount is per individual)
1 if the amount of external grant is missing observation
1 if the publication record is missing observation

Table 1 Continued

Name	Definition
	Publication variables below are for the whole career
RefSgJP	Total number refereed single-authored published in Japan
RefSgUSEU	Total number refereed single-authored published in US, EU and other
TotRefSg	RefSgJP+RefSgUSEU
RefCoJP	Total number refereed co-authored published in Japan
RefCoUSEU	Total number refereed co-authored published in US, EU and other
TotRefCo	RefCoJP+RefCoUSEU
TotRefArticles	TotRefSg+TotRefCo/2
WorkPJP	Total number of working papers published in Japan
WorkPUSEU	Total number of working papers published in US, EU and other
TotWorkP	WorkPJP+WorkPUSEU
BookSgJP	Total number of books single authored published in Japan
BookSgUSEU	Total number of books single authored published in US, EU and other
TotBookSg	BookSgJP + BookSgUSEU
BookCoJP	Total number of books co-authored published in Japan
BookCoUSEU	Total number of books co-authored published in US, EU and other
TotBookCo	BookCoJP+BookCoUSEU
TotBook	TotBookSg+TotBookCo/2
BookEdJP	Total number of books edited in Japan
BookEdUSEU	Total number of books edited in the US, EU and other
TotBookEd	BookEdJP+BookEdUSEU
BookChJP	Total number of book chapters published in Japan
BookChUSEU	Total number of book chapters published in the US, EU and other
TotBookCh	BookChJP+BookChUSEU
Textbook	Total number of textbooks
Dependent variable	
Salary(in 10,000 yen)	Total annual salary in 2008

Note 1: Doctor of Science (DSc.); Doctor of Economics (DEc.) Note 2: Some respondents did not provide information for (Labor), (IntGrant), (COE) and publications. For such cases, sample averages are imputed. All models include dummy variables which indicate if data were imputed this way (FieldMiss; IntGrantMiss; COEMiss; ExtGrantMiss; PubMiss). Note 3: The number of publications published in other places beside Japan, US and EU is extremely small.

Table 2: Summary Statistics

Variable name	All(n=337)		Male(n=279)		Female($\mathrm{n}=58$)	
	Mean	Std.	Mean	Std.	Mean	Std.

Personal characteristics

Female	0.172	0.378	-	-	1	-
Age	49.463	11.317	50.735	11.282	43.345	9.393
Married	0.825	0.381	0.839	0.368	0.759	0.432
Kids	0.157	0.459	0.147	0.437	0.207	0.554

Job characteristics

Rank
AssocProf
FullProf
FixTerm
Courses
Cours1st
Cours2nd
Labor
FieldMiss
Admin
Cohort80
Cohort90
Cohort00-03
Cohort04

1.546	0.640	1.599	0.615	1.293	0.701
0.294	0.456	0.265	0.442	0.431	0.499
0.626	0.485	0.667	0.472	0.431	0.499
0.056	0.230	0.060	0.240	0.034	0.184
3.024	1.620	2.989	1.691	3.190	1.217
0.467	0.852	0.444	0.818	0.577	0.999
0.351	0.890	0.336	0.924	0.420	0.706
0.092	0.289	0.082	0.276	0.138	0.348
0.036	0.186	0.039	0.195	0.017	0.131
0.045	0.207	0.047	0.211	0.034	0.184
0.237	0.426	0.251	0.434	0.172	0.381
0.258	0.438	0.251	0.434	0.293	0.459
0.151	0.359	0.147	0.355	0.172	0.381
0.160	0.367	0.125	0.332	0.328	0.473

Institutional characteristics

PrivUniv	0.585	0.494	0.570	0.496	0.655	0.479
PubUniv	0.086	0.281	0.090	0.286	0.069	0.256
BussDep	0.042	0.199	0.039	0.195	0.052	0.223
PhDOffer	0.674	0.470	0.688	0.464	0.603	0.493
IntGrant	52.188	31.569	53.091	32.013	47.845	29.206
IntGrMiss	0.021	0.143	0.025	0.157	0	0
COE	7.086	27.088	7.735	28.543	3.966	18.443
COEMiss	0.045	0.207	0.050	0.219	0.017	0.131

Human capital characteristics

Seniority	12.739	10.545	13.591	10.708	8.638	8.697
Experience	17.065	11.638	18.332	11.741	10.967	8.970
NonAExp	3.397	7.158	3.434	7.418	3.222	5.798
CarBreak	0.042	0.199	0.025	0.157	0.121	0.329
PhD	0.650	0.478	0.652	0.477	0.638	0.485
PhDAbroad	0.104	0.306	0.111	0.315	0.069	0.256
ExtGrant	69.039	189.411	58.154	90.725	121.401	409.840
ExtGrantMiss	0.151	0.359	0.161	0.368	0.103	0.307
PubMiss	0.068	0.253	0.068	0.252	0.069	0.256

Table 2 Continued

Variable name	All(n=337)		Male(n=279)		Female($\mathrm{n}=58$)	
	Mean	Std.	Mean	Std.	Mean	Std.
RefSgJP	4.768	9.442	4.902	10.099	4.122	5.254
RefSgUSEU	1.035	2.630	1.081	2.704	0.813	2.252
RefCoJP	2.061	5.747	2.140	5.827	1.677	5.375
RefCoUSEU	1.357	3.808	1.533	4.140	0.507	0.995
WorkPJP	11.449	13.011	12.471	13.679	6.531	7.459
WorkPUSEU	0.099	0.694	0.099	0.723	0.093	0.539
BookSgJP	1.258	2.934	1.301	3.059	1.052	2.248
BookSgUSEU	0.035	0.235	0.038	0.252	0.020	0.131
BooksCoJP	1.995	3.585	2.141	3.757	1.293	2.506
BookCoUSEU	0.105	0.522	0.104	0.510	0.111	0.582
BookEdJP	0.732	1.622	0.799	1.699	0.413	1.134
BookEdUSEU	0.041	0.221	0.042	0.212	0.037	0.262
BookChJP	3.045	5.294	3.128	5.521	2.641	4.038
BookChUSEU	0.334	1.096	0.327	1.027	0.368	1.393
Textbook	0.701	1.521	0.718	1.541	0.617	1.432
Dependent variable						
Salary	1022.300	280.086	1050.007	275.054	889.017	267.610

Table 3: OLS Models (Dependent Variable: Log of Annual Salary)

Variables	OLS 1		OLS 2		OLS 3		OLS 4		OLS 5
	with rank	without rank	with var (Rank)						
Female	$\begin{aligned} & -0.071^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.069^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.068^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.065^{* *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.069^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.067^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.070^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.069^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.071^{* * *} \\ & (0.028) \end{aligned}$
AssocProf	$\begin{aligned} & 0.058 \\ & (0.050) \end{aligned}$	-	$\begin{aligned} & 0.059 \\ & (0.049) \end{aligned}$	-	$\begin{aligned} & 0.058 \\ & (0.049) \end{aligned}$	-	$\begin{aligned} & 0.062 \\ & (0.048) \end{aligned}$		
FullProf	$\begin{aligned} & 0.183^{* * *} \\ & (0.063) \end{aligned}$	-	$\begin{aligned} & 0.187^{* * *} \\ & (0.063) \end{aligned}$	-	$\begin{aligned} & 0.187^{* * *} \\ & (0.062) \end{aligned}$		$\begin{aligned} & 0.189^{* * *} \\ & (0.060) \end{aligned}$		
Rank	-	-	-	-	-	-	-	-	$\begin{aligned} & 0.100^{* * *} \\ & (0.030) \end{aligned}$
Personal									
Age	$\begin{aligned} & 0.032^{* *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.040^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.032^{* *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.040^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.033^{* *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.041^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.036^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.044^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.032^{* *} \\ & (0.015) \end{aligned}$
Age ${ }^{2}$	$\begin{gathered} -0.0002^{*} \\ (0.0002) \end{gathered}$	$\begin{aligned} & -0.0003^{* *} \\ & (0.0002) \end{aligned}$	$\begin{aligned} & -0.0003^{*} \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0003^{* *} \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0003^{*} \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0003^{* *} \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0003^{* *} \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0004^{* *} \\ & (0.0001) \end{aligned}$	$\begin{gathered} -0.0002^{*} \\ (0.0002) \end{gathered}$
Married	$\begin{aligned} & 0.049^{* *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.048^{*} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.047^{* *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.048^{*} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.050^{* *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.049^{* *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.048^{* *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.047^{*} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.048^{*} \\ & (0.025) \end{aligned}$
Kids	$\begin{aligned} & 0.031^{* *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.021^{*} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.031^{* *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.031^{* *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.020 \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.029^{* *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.017 \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.029^{* *} \\ & (0.014) \end{aligned}$
Job									
FixTerm	$\begin{aligned} & -0.243^{* * *} \\ & (0.070) \end{aligned}$	$\begin{aligned} & -0.266^{* * *} \\ & (0.075) \end{aligned}$	$\begin{aligned} & -0.240^{* * *} \\ & (0.071) \end{aligned}$	$\begin{aligned} & -0.261^{* * *} \\ & (0.076) \end{aligned}$	$\begin{aligned} & -0.241^{* * *} \\ & (0.071) \end{aligned}$	$\begin{aligned} & -0.262^{* * *} \\ & (0.076) \end{aligned}$	$\begin{aligned} & -0.238^{* * *} \\ & (0.070) \end{aligned}$	$\begin{aligned} & -0.261^{* * *} \\ & (0.075) \end{aligned}$	$\begin{aligned} & -0.229^{* * *} \\ & (0.068) \end{aligned}$
Courses	$\begin{aligned} & -0.011^{*} \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.011^{*} \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.011^{*} \\ (0.006) \end{gathered}$	$\begin{aligned} & -0.009 \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.010^{*} \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.011^{*} \\ & (0.006) \end{aligned}$
Cours1st	$\begin{aligned} & -0.010 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.015) \end{aligned}$
Cours2nd	$\begin{aligned} & 0.015 \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.013 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.014 \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.012 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.013 \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.011 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.015 \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.012 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.017 \\ & (0.013) \end{aligned}$

Table 3 Continued

Variables	OLS 1		OLS 2		OLS 3		OLS 4		OLS 5
	with rank	without rank	with var (Rank)						
Labor	$\begin{aligned} & 0.069^{* *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.073^{* *} \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.068^{* *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.073^{* *} \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.068^{* *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.072^{* *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.070^{* *} \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.072^{* *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.069^{* *} \\ & (0.034) \end{aligned}$
Admin	$\begin{aligned} & 0.015 \\ & (0.041) \end{aligned}$	$\begin{aligned} & 0.028 \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.041) \end{aligned}$	$\begin{aligned} & 0.030 \\ & (0.043) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (0.040) \end{aligned}$	$\begin{aligned} & 0.034 \\ & (0.043) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.040) \end{aligned}$	$\begin{aligned} & 0.034 \\ & (0.041) \end{aligned}$	$\begin{aligned} & 0.017 \\ & (0.042) \end{aligned}$
Cohort80	$\begin{aligned} & 0.008 \\ & (0.037) \end{aligned}$	$\begin{aligned} & 0.012 \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.014 \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.015 \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.028 \\ & (0.040) \end{aligned}$	$\begin{aligned} & 0.010 \\ & (0.037) \end{aligned}$
Cohort90	$\begin{aligned} & -0.026 \\ & (0.063) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.064) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.065) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.007 \\ & (0.065) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.016 \\ & (0.065) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.063) \end{aligned}$
Cohort00-03	$\begin{aligned} & 0.047 \\ & (0.084) \end{aligned}$	$\begin{aligned} & 0.045 \\ & (0.086) \end{aligned}$	$\begin{aligned} & 0.062 \\ & (0.085) \end{aligned}$	$\begin{aligned} & 0.063 \\ & (0.087) \end{aligned}$	$\begin{aligned} & 0.063 \\ & (0.085) \end{aligned}$	$\begin{aligned} & 0.063 \\ & (0.086) \end{aligned}$	$\begin{aligned} & 0.067 \\ & (0.086) \end{aligned}$	$\begin{aligned} & 0.073 \\ & (0.087) \end{aligned}$	$\begin{aligned} & 0.037 \\ & (0.083) \end{aligned}$
Cohort04	$\begin{aligned} & -0.022 \\ & (0.103) \end{aligned}$	$\begin{aligned} & -0.030 \\ & (0.106) \end{aligned}$	$\begin{aligned} & 0.0001 \\ & (0.102) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.105) \end{aligned}$	$\begin{aligned} & 0.0005 \\ & (0.102) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.104) \end{aligned}$	$\begin{aligned} & 0.013 \\ & (0.103) \end{aligned}$	$\begin{aligned} & 0.009 \\ & (0.105) \end{aligned}$	$\begin{aligned} & -0.017 \\ & (0.102) \end{aligned}$
Institutional									
PrivUniv	$\begin{aligned} & 0.161^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.166^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.163^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.168^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.163^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.169^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.162^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.169^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.162^{* * *} \\ & (0.020) \end{aligned}$
PubUniv	$\begin{aligned} & -0.013 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.017 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.017 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.027 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.028) \end{aligned}$
BussDep	$\begin{aligned} & 0.069 \\ & (0.065) \end{aligned}$	$\begin{aligned} & 0.097 \\ & (0.071) \end{aligned}$	$\begin{aligned} & 0.059 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.087 \\ & (0.070) \end{aligned}$	$\begin{aligned} & 0.058 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.086 \\ & (0.069) \end{aligned}$	$\begin{aligned} & 0.045 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.071 \\ & (0.069) \end{aligned}$	$\begin{aligned} & 0.071 \\ & (0.067) \end{aligned}$
PhDOffer	$\begin{aligned} & 0.073^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.073^{* * *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.077^{* * * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.077^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.077^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.077^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.084^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.085^{* * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.075 * * * \\ & (0.020) \end{aligned}$
IntGrant	$\begin{aligned} & -0.0001 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.00005 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.0001 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.00007 \\ & (0.0003) \end{aligned}$	$\begin{gathered} -0.00009 \\ (0.0003) \end{gathered}$	$\begin{aligned} & -0.00004 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.0001 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.00008 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.0001 \\ & (0.0003) \end{aligned}$
COE	$\begin{aligned} & 0.0003 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & 0.0002 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & 0.0004 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & 0.0003 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & 0.0003 \\ & (0.0003) \end{aligned}$				

Table 3 Continued

Table 3 Continued

VariableS	OLS 1		OLS 2		OLS 3		OLS 4		$\begin{aligned} & \text { OLS } 5 \\ & \text { with } \\ & \operatorname{var}(\text { Rank }) \end{aligned}$
	with rank	without rank	with rank	without rank	with rank	without rank	with rank	without rank	
TotRefSg	-	-	0.0006	0.0005	-	-	-	-	-
	-	-	(0.0008)	(0.0008)	-	-	-	-	-
RefCoJP	-0.0008	-0.0006	-	(0.0008)	-	-	-	-	-0.0007
	(0.002)	(0.002)	-	-	-	-	-	-	(0.002)
RefCoUSEU	-0.002	-0.002	-	-	-	-	-	-	-0.002
	(0.003)	(0.003)	-	-	-	-	-	-	(0.003)
TotRefCo		-	-0.0006	-0.0004	-	-	-	-	-
	-	-	(0.001)	(0.001)	-	-	-	-	-
TotRefArticles	-	-	-	(0.001)	0.0002	0.0001	0.0003	0.0003	-
	-	-	-	-	(0.0007)	(0.0007)	(0.0006)	(0.0006)	-
WorkPJP	0.001	0.002**	-	-	(0.000	-	-	-	0.001
	(0.0008)	(0.0008)	-	-	-	-	-	-	(0.0008)
WorkPUSEU	-0.016	-0.016	-	-	-	-	-	-	-0.016
	(0.011)	(0.011)	-	-	-	-	-	-	(0.011)
TotWorkP	(0.011)	(0.011)	0.0007	0.001^{*}	0.0007	0.001^{*}	-	-	(0.011)
	- 0000	-	(0.0008)	(0.0008)	(0.0008)	(0.0008)	-	-	- 0000
BookSgJP	0.00007	0.0004	((0.00	(-	-	-	0.00007
	(0.003)	(0.003)	-	-	-	-	-	-	(0.003)
BookSgUSEU	0.010	0.011	-	-	-	-	-	-	0.011
	(0.026)	(0.026)	-	-	-	-	-	-	(0.026)
TotBookSg	-	-	-0.0009	-0.0006	-	-	-	-	-
	-	-	(0.003)	(0.003)	-	-	-	-	-
BookCoJP	0.002	0.003		-	-	-	-	-	0.003
	(0.003)	(0.003)	-	-	-	-	-	-	(0.003)
BookCoUSEU	0.016	0.020*	-	-	-	-	-	-	0.017
	(0.014)	(0.013)	-	-	-	-	-	-	(0.014)

Table 3 Continued

Variables	OLS 1		OLS 2		OLS 3		OLS 4		OLS 5withvar (Rank)
	with rank	without rank							
TotBookCo	-	-	0.002	0.003	-	-	-	-	-
	-	-	(0.003)	(0.003)	-	-	-	-	-
TotBooks	-	-	-	-	0.0008	0.001	-	-	-
	-	-	-	-	(0.003)	(0.003)	-	-	-
BookEdJP	0.007	0.006	-	-	-	-	-	-	0.007
	(0.007)	(0.007)	-	-	-	-	-	-	(0.007)
BookEdUSEU	-0.020	-0.033	-	-	-	-	-	-	-0.023
	(0.027)	(0.025)	-	-	-	-	-	-	(0.026)
TotBookEd	-	-	0.008	0.007	0.009	0.008	-	-	-
	-	-	(0.006)	(0.007)	(0.006)	(0.007)	-	-	-
BookChJP	0.001	0.0007	(-	-	-	-	-	0.001
	(0.002)	(0.002)	-	-	-	-	-	-	(0.002)
BookChUSEU	0.017*	0.017**	-	-	-	-	-	-	0.017**
	(0.009)	(0.008)	-	-	-	-	-	-	(0.008)
TotBookCh	-	-	0.002	0.002	0.002	0.001	-	-	-
	-	-	(0.002)	(0.002)	(0.001)	(0.002)	-	-	-
Textbook	-0.002	-0.001	-0.003	-0.002	-0.002	0.00002	-	-	-0.002
	(0.007)	(0.007)	(0.006)	(0.007)	(0.006)	(0.006)	-	-	(0.007)
Constant	5.535***	$5.351^{* * *}$	5.499***	5.309***	5.482***	5.285***	5.403***	$5.203^{* * *}$	5.508***
	(0.349)	(0.352)	(0.333)	(0.333)	(0.329)	(0.328)	(0.336)	(0.331)	(0.349)
No.obs.	337	337	337	337	337	337	337	337	337
R^{2}	0.78	0.76	0.77	0.76	0.77	0.76	0.77	0.75	0.78

[^15]Table 4: Rank Attainment Regressions (Dependent Variable: Rank)

Variables	Logit		OLS	
	Coef.	Std.Err.	Coef.	Std.Err.
Personal characteristics				
Female	0.092	(0.602)	0.023	(0.068)
Age	0.207	(0.430)	$0.080^{* * *}$	(0.030)
Age ${ }^{2}$	-0.0001	(0.005)	$-0.0006^{* *}$	(0.0003)
Married	-0.148	(0.582)	-0.001	(0.065)
Kids	-0.610*	(0.352)	-0.080**	(0.040)
Job characteristics				
FixTerm	$-6.766^{* * *}$	(1.964)	-0.368*	(0.142)
Courses	0.040	(0.189)	0.020	(0.014)
Cours1st	0.135	(0.287)	-0.020	(0.033)
Cours2nd	-0.351	(0.278)	-0.037	(0.040)
Labor	0.578	(0.666)	0.043	(0.061)
Admin	0.934	(1.079)	0.113	(0.102)
Cohort80	-1.906	(2.363)	0.023	(0.082)
Cohort90	-2.106	(3.237)	0.168	(0.144)
Cohort00-03	-2.883	(3.550)	0.077	(0.210)
Cohort04	-4.565	(3.837)	-0.127	(0.274)
Institutional characteristics				
PrivUniv	0.960*	(0.624)	0.040	(0.045)
PubUniv	0.231	(1.072)	0.044	(0.087)
BussDep	6.391***	(1.853)	$0.256{ }^{* * *}$	(0.093)
PhDOffer	-0.727	(0.641)	-0.013	(0.041)
IntGrant	$0.013^{* * *}$	(0.005)	0.001**	(0.0004)
COE	-0.009	(0.008)	-0.00007	(0.0006)
Human capital characteristics				
Seniority	0.313	(0.278)	0.001	(0.009)
Seniority ${ }^{2}$	-0.018*	(0.011)	-0.0001	(0.0002)
Experience	0.223	(0.411)	0.054***	(0.021)
Experience ${ }^{2}$	0.004	(0.015)	$-0.0008^{* *}$	(0.0004)
NonAExp	0.002	(0.102)	-0.007	(0.010)
NonAExp ${ }^{2}$	0.003	(0.005)	0.0004	(0.0004)
CarBreak	1.129	(1.085)	-0.021	(0.092)
PhD	$1.656^{* * *}$	(0.542)	0.095**	(0.044)
PhDAbroad	-1.252	(0.984)	0.005	(0.079)
ExtGrant	0.008**	(0.004)	0.00007	(0.0001)
RefSgJP	0.004	(0.051)	-0.002	(0.002)
RefSgUSEU	0.065	(0.126)	0.002	(0.007)
RefCoJP	0.267**	(0.148)	0.001	(0.003)
RefCoUSEU	0.009	(0.107)	-0.001	(0.004)
WorkPJP	$0.180^{* *}$	(0.056)	0.004***	(0.001)
WorkPUSEU	-0.455	(0.433)	0.001	(0.014)
BookSgJP	0.0389	(0.210)	0.003	(0.006)

Table 4 Continued

	Logit			OLS	
Variables	Coef.	Std.Err.		Coef.	Std.Err.
BookSgUSEU	0.553	(1.775)		0.005	(0.056)
BookCoJP	$0.346^{* *}$	(0.148)		0.004	(0.005)
BookCoUSEU	0.128	(0.346)		0.036	(0.026)
BookEdJP	0.130	(0.304)		-0.006	(0.010)
BookEdUSEU	-0.613	(2.001)		-0.099	(0.073)
BookChJP	-0.085^{*}	(0.051)		-0.004	(0.006)
BookChUSEU	-0.194	(0.443)		0.005	(0.020)
Textbook	0.151	(0.231)		0.010	(0.012)
Constant				$-1.571^{* * *}$	(0.742)
Cut1	6.262	(8.989)			
Cut2	14.202	(9.257)			

Marginal effect

Female $=$	0.002
$P h D=$	0.06

No.obs.	337	337
Pseudo R^{2}	0.74	0.76

Note 1: Inside the parentheses are robust standard errors. ${ }^{* * *}$ Significant at the $1 \%,{ }^{* *}$ at the $5 \%,{ }^{*}$ at the 10% level. Note 2: Although not reported here, regressions include (FieldMiss), (IntGrantMiss), (COEMiss), (ExtGrantMiss), (PubMiss).

Table 5: The National Personnel Authority Salary Table Guideline (Excerpt)

	Class 2	Class 3	Class 4	Class 5
Division	Monthly Salary (in 100 yen)			
1	2022	2635	3170	4091
2	2044	2666	3250	4116
3	2066	2697	3240	4141
4	2088	2728	3275	4166
5	2109	2759	3311	4192
6	2131	2788	3346	4217
7	2153	2817	3381	4242
8	2175	2846	3416	4267
9	2198	2876	3454	4290
10	2222	2906	3485	4315
\vdots	\vdots	\vdots	:	:
75	3468	4194	4566	5524
76	3478	4203	4576	5533
77	3489	4210	4586	5542
78	3499	4216	4593	5551
79	3509	4222	4600	5560
80	3591	4228	4607	5569
81	3529	4234	4615	5578
82	3539	4240	4622	-
83	3549	4216	4629	-
84	3559	4252	4636	-
\vdots	!	:	-	-

Source: 2006 National Personnel Authority Salary Table Guideline (in Japanese). Class 2 has up to 141 divisions and Class 3 has up to 117 divisions.

[^0]: GSI R working papers are preliminary research documents, published by the Graduate School of International Relations. To facilitate prompt distribution, they have not been formally reviewed and edited. They are circulated in order to stimulate discussion and critical comment and may be revised. The views and interpretations expressed in these papers are those of the author(s). It is expected that most working papers will be published in some other form.
 ${ }^{1}$ piciorea@economics.utah.edu
 2 staka@iuj.ac.jp

[^1]: ${ }^{1}$ Asahi News, October 5, 2008.
 ${ }^{2}$ Japan Inter-Society Liaison Association Committee for Promoting Equal Participation of Men and Women in Science and Engineering (annex.jsap.or.jp/renrakukai/2007enquete/h19enquete_report_v2.pdf).

[^2]: ${ }^{3}$ According to interviews conducted by the author. We interviewed several academics, including representatives of the Association of Private Universities of Japan (Nihon Shiritsu Daigaku Kyoukai), and of the Faculty and Staff Union of Japanese Universities (Zenkouku Daigaku Kosen Kyoshokuin Kumiai).

[^3]: ${ }^{4}$ Throughout this section, we use 'females' synonymously with 'the disadvantaged group'.

[^4]: ${ }^{5}$ Salary does not include research funds, travel funds for research or allowances for housing and dependants. However, it does include transportation and adjustments for the cost of living in certain cities.
 ${ }^{6}$ Each university has its own union.
 ${ }^{7}$ The National Personnel Authority is a specialized, neutral, third-party organization dealing with public employee management.

[^5]: ${ }^{8}$ Armed Forces Qualification Tests (US)

[^6]: ${ }^{9}$ Similarly, the majority of papers on gender salary differentials in academia in the US and the UK were not able to correct for sample selection bias.
 ${ }^{10}$ Unfortunately we only have statistics for PhD graduates from Japan.

[^7]: ${ }^{11}$ The questionnaire was distributed only in Japanese. A copy in Japanese (or its English translation) is available from the author upon request.
 ${ }^{12}$ Out of 747 listed universities only 449 had a link to a website. Missing links are mostly for private universities.
 ${ }^{13}$ Often, economics departments are combined with business departments to form a larger department. In this case, names from the business departments are also included.

[^8]: ${ }^{14}$ Ministry of Education, Sports, Science and Technology (MEXT)
 ${ }^{15}$ Based on the author's calculations.
 ${ }^{16}$ National Longitudinal Surveys of Youth (US)

[^9]: ${ }^{17}$ We only included the number of children under 6 years old, since our preliminary estimates did not show a significant effect of older children.
 ${ }^{18}$ In our preliminary estimations, we included dummies for various other fields. However, this did not affect the results; only the labor field was found to be highly statistically significant.

[^10]: ${ }^{19}$ Ministry of Education, Science, Sport and Technology
 ${ }^{20}$ The amount is per individual; however the grant might have been obtained jointly. When grant was obtained jointly with other researchers, respondents were asked to report the amount based on their own contribution to the project.

[^11]: ${ }^{21}$ In Ransom's study the effect of seniority is negative. A more detailed analysis of this issue is beyond the purpose of this study.
 ${ }^{22}$ The amount of external grant may be an endogenous variable due to unobserved ability. However, the majority of papers on salary differences in academia do not control for such biases.
 ${ }^{23}$ We would like to note here that, in Japan, external research grants do not add to salary and do not provide summer salary, as in the US.
 ${ }^{24}$ Although not reported here, we experimented with other measures of publications. We use the publication rates defined as the number of publications divided by total experience as an academic. We found that the effects of these measures of publications are insignificant and the coefficient for female was unaffected by the choice of such a specification.

[^12]: ${ }^{25}$ In a preliminary estimation we controlled for error-in-variables endogeneity in the refereed articles by applying a 2SLS stage procedure to OLS 4. Given concerns related to the choice of instruments, we do not fully report the results here. We used as instruments parents' education and their interaction terms and spouse's education. Hansen's J-statistics did not reject the overidentifying restrictions (p -value $=0.60$). The C-statistics test rejected the exogeneity of refereed articles (p -value $=0.01$). We obtained a small statistically significant effect of refereed article on salary; one extra refereed article would increase annual salary by about 0.8% or 8 thousand yen, evaluated at the sample mean salaries. However, the estimated coefficient for the female dummy was almost unaffected (-0.070) and remains statistically significant at the 1% level. Results are available from the author upon request.

[^13]: ${ }^{26}$ We do not have data only for those with a degree in economics.
 ${ }^{27}$ Numbers include those who joined universities. There is no distinction between those who joined fouryear and those who joined two-year universities.
 ${ }^{28}$ The number of female graduates remained small even after 1990, the average numbers of males and females were 201.34 and 61.06 , respectively.

[^14]: ${ }^{29}$ All productivity measures, except working papers published in Japan, are not significant determinants of rank attainment.

[^15]: Note 1: Inside the parentheses are robust standard errors. ${ }^{* * *}$ Significant at the 1%, ** at the 5%, * at the 10% level. Note 2: Although not reported here, regressions include (FieldMiss), (IntGrantMiss), (COEMiss), (ExtGrantMiss), (PubMiss).

