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After the 1990s, the Australian coal industry vigorously eliminated two types of
task demarcations: (I) the demarcation between production and maintenance stream
tasks and (II) the demarcation within the production stream. Using data covering
1985-2005, I estimate the effect of the elimination of these demarcations on productiv-
ity, then analyze several explanations for how multi-tasking would affect productivity.
The results show that the elimination of ‘between’ demarcation would increase coal
production by 27%, while the elimination of ‘within’ demarcation has no effect on
productivity. Furthermore, the relationship between coal demand uncertainty and the
elimination of demarcations is weak. These patterns are inconsistent with a common
explanation for how multi-tasking affects productivity: the ability of mines to freely
redeploy workers enables mines to fully utilize labor, and to adjust to demand fluctu-
ations. Rather, these results are better explained by the elimination of redundancies:
the bundling of ‘overlapping tasks’ reduces duplication of effort and unnecessary wait
time.

The growing body of literature documents the trend of work organizations shifting away

from Tayloristic organization, characterized by specialization, towards more flexible struc-

tures, involving multi-tasking with less specialized task assignment. Multi-tasking is a situa-

tion in which workers are capable of performing several tasks, and may be performing these

tasks with some regularity (Lazear 1998). Extensive evidence suggests that multi-tasking

is widespread. Machin and Wadhwani (1991) study the effects of unions on organizational

changes using British Data2, showing that 27% of their sample experienced organizational

changes such as the elimination of job demarcations. Ichniowski (1992) and Adler et al.

1The data, additional results, as well as the Stata commands and the Fortran programs used to generate
the results presented in this paper are available from the author upon request.

2Workplace Industrial Relations Survey
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(1995) provide case studies showing that, by significantly reducing the number of job classi-

fications, firms have increased the use of multi-tasking. Further research shows that multi-

tasking is often achieved by job rotation. Using 694 manufacturing establishments in the US,

Osterman (1994) shows that nearly 50% of his sample has adopted job rotation. Lindbeck

and Snower (2001) present evidence that European firms are moving toward multi-tasking

work organizations, with similar evidence from Korea presented by Park (1996).

The widespread use of multi-tasking indicates that the adoption of multi-tasking job

design is motivated by its assumed productivity-enhancing effect. However, the existing lit-

erature has not provided satisfactory answers to the following two questions. First, what is

the productivity-enhancing effect of multi-tasking? Katz et al. (1987) examine the effect of

multi-tasking job design, such as reduced job classification, on plant-level productivity of a

large US automobile producer, but they find that adoption of multi-tasking has no effect on

productivity. Cappelli and Newmark (2001) find that job rotation has a negative effect on

productivity (see Table 3 of their study). The literature on labor market flexibility typically

focuses on the effects that the unions have on the adoption of multi-tasking, or on the substi-

tution elasticities among different inputs (Machin and Wadhwani 1991; Freeman and Medoff

1982; Magnani and Prentice 2006). However, there has not been an estimate of the effect of

adoption of multi-tasking on productivity. Other studies have focused on complementarities

among different human resources practices (Ichniowski et al. 1997; Macduffie 1995), making

it difficult to assess the isolated impact of multi-tasking. Thus, the effects of multi-tasking

on productivity has not been well-established.

Second, what is the mechanism through which multi-tasking job designs affect productiv-

ity? Although there are several studies that examine why some firms adopt ‘flexible work

practices’ while other firms do not (Osterman 1994; Ichniowski et al. 1995; Gittleman et

al. 1998; Gale et al. 2002), these studies have not tested existing theories regarding how

multi-tasking would affect productivity.
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In this paper, I attempt to answer both of the above questions by using an original data

set from Australian open cut coal mines covering the period 1985 to 2005. Australia has been

the world’s largest coal exporter for more than a decade, accounting for nearly 30% of world

coal exports in 20063. However, in the 1990s, the Australian coal mining industry was criti-

cized for its inefficiency compared with other coal producers such as the U.S. (Tasman Asia

Pacific 1997). Rigid task demarcations were considered by mine managers to be one of the

major factors restricting Australian mines’ productivity (Productivity Commissions 1998a).

Nonetheless, after the bargaining system was decentralized in the 1990s, Australian coal

mines vigorously eliminated two types of task demarcation: (I) task demarcation between

production stream tasks (equipment operation tasks) and engineering stream tasks (mainte-

nance tasks), and (II) task demarcation within the production stream tasks (tasks associated

with different types of equipment). In this paper, I estimate the effects of the elimination

of each type of task demarcation on productivity, then analyze the following four possible

explanations for how multi-tasking job designs affect productivity. These explanations are

derived from economic literature as well as from interviews with mine managers.

First, multi-tasking would affect productivity by eliminating redundancy. A task consists

of a series of subtasks. As noted by Lazear (1998:450), when two tasks share a common

subtask which can be performed by the same worker at the same time, the bundling of the

two tasks would eliminate duplication of effort and unnecessary wait time. Second, multi-

tasking would affect productivity by increasing input flexibility; the ability of the mines

to reassign workers to different tasks according to production needs. Third, multi-tasking

would affect productivity by enhancing task coordination within the production team. As

noted by Lazear (1998:446), task coordination is easier if team members know each other’s

tasks. Fourth, multi-tasking between production and engineering workers may facilitate

regular equipment maintenance. Regular maintenance is likely to reduce major machine

3Based on OECD International Energy Agency, “Coal Information 2008”.
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breakdowns, contributing to increased productivity.

The above explanations have different implications regarding (i) the productivity-enhancing

effects of the elimination of specific task demarcations, and (ii) the relationship between coal

demand uncertainty and the adoption of multi-tasking, giving us some leverage in differen-

tiating between these explanations. Past empirical studies have treated the productivity-

enhancing effects of multi-tasking as events occurring inside a black box. The analysis in

this paper would open the black box, shedding light on the mechanism through which multi-

tasking job designs affect productivity.

It should be noted that the mining industry may not be representative of the whole econ-

omy. However, the organizational structure of the mining industry shares important features

with other industries, manufacturing in particular. First, the division of work into produc-

tion and maintenance streams is a common feature of the manufacturing industry. Second,

coal extraction is carried out in a team setting. Team production is also a common feature in

many manufacturing organizations. Therefore, the shift toward multi-tasking organization

in the manufacturing industry would also involve the elimination of the aforementioned two

types of task demarcations. Thus, analysis of the mining industry will provide useful insights

into other industries.

1 Task demarcation in the Australian coal mining in-

dustry

I begin with a description of task demarcations in the Australian coal mining industry, and

with a description of how task demarcations were removed. This study utilizes data from 21

open-cut coal mines in Australia for the period 1985 to 2005. The open cut mining method

involves removal of the earth above the coal seam. The method generally requires two task

streams: one for production and the other for engineering. Workers in the production stream
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operate three types of equipment; bulldozers, excavators4, and trucks. Bulldozers are used to

level the surface of the coal seams. Excavators are used to extract coal from the coal seam,

then load it onto the truck. Trucks are used to deliver coal to the coal washing plant. Workers

in the engineering streams maintain the equipment. Maintenance tasks range from major

tasks, such as fixing a fuel system, to relatively minor tasks, such as changing the bucket

teeth of a bulldozer. Maintenance is usually done at a workshop, however maintenance for

unexpected machine breakdowns and lesser tasks are carried out onsite at the coal field as

needs arise.

In Australia, there was strict task demarcation between the production and engineering

streams. Furthermore, there was strict task demarcation within the production stream based

on the type of equipment a worker operates. Mine managers considered task demarcations

to be one of the major factors restricting productivity. Exxon Coal (1998) notes that

“Australian coal mines fall well short of best practice productivity levels achieved

by comparable international coal mines. ... There are a significant number of

factors which contribute to this result. ... Among other things, this includes

demarcation of work....”

Historically, task demarcations in Australian coal mining can be traced to job-specific

union coverage (Barry et al. 1999). However, task demarcations became deeply entrenched

in its workplace by various provisions of multi-employer collective bargaining agreements

that covered the coal mining industry. Such collective agreements are called the award in

Australia. The most relevant award in this study is the P&E Award of 19905, which covered

almost all of the coal mines in Australia in the 1990s. The P&E Award entrenched task

demarcations in the following ways. First, it provided a legal basis to task demarcation

within the production stream. The P&E Award classified production stream tasks into nine

4An excavator is a machine with a large size bucket to extract coal. Excavators include shovels, excavators,
and draglines.

5P&E Award: the Australian Coal Mining (Production and Engineering) 1990 Interim Consent Award
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categories based on equipment type and capacity. These narrowly defined job classifica-

tions entrenched task demarcation within the production stream. Second, the P&E Award

provided a legal basis for the demarcation between the production and engineering streams.

Clause 31 of the P&E Award, known as the ‘customs and practices’ provision, gave common,

informal work practices in the coal industry legal status, thus providing a legal basis for the

demarcation between the two streams.

Nonetheless, the industry gained the opportunity to eliminate task demarcations when

the bargaining system was decentralized. First, the Industrial Relations Act of 1988, the

Industrial Relations Reform Act of 1993 and the Work Place Relations Act of 1996 came into

practice, allowing mines to opt out of the awards. More specifically, these acts allowed mines

to negotiate mine-specific collective agreements with employees, allowing mines to alter the

award conditions that entrenched task demarcations. Second, the P&E Award included

Clause 20, which allowed mines to alter the P&E Award conditions by negotiating mine-

specific collective agreements. Mine-specific collective agreements are called ‘enterprise

agreements’ in order to emphasize the fact that the agreements are negotiated at an enter-

prise level, not at an industry level. The first enterprise agreements were certified only after

1990. Below, I describe exactly how enterprise agreements eliminated task demarcations.

The elimination of demarcation within the production stream was accomplished by the

negotiation of a ‘work model’. Due to mounting criticism by coal managers concerning the

perceived inefficiency of Australian coal mines in the late 1980s, the P&E Award introduced

the ‘work model’ provision. The work model provision allows a mine to reduce job classifi-

cations by negotiating a work model with its employees. A work model typically specifies

the list of core skills. Jobs may be classified into several levels based on the number of skills

a worker possesses, with each level being given a different wage rate. A work model has to

be approved by the Coal Industry Tribunal in the form of an enterprise agreement6. The

6The Coal Industry Tribunal is one branch of the Industrial Relations Commissions which are the indus-
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number of job levels is determined by negotiations at each mine. A job design with fewer

job levels provides mine managers with greater multi-tasking capability. This point has been

made in several enterprise agreements. Bloomfield Colliery’s 1992 enterprise agreement re-

duced its job classification to five levels, noting that “[t]his relatively flat wage structure

(thus fewer job levels) will enable employees to be involved in a broad range of tasks (Clause

9.2).”

According to the case study conducted by Barry et al. (1999), multi-tasking within the

production stream was rigorously implemented. For example, the Blackwater mine in the

State of Queensland adopted a work model in 1992. After the adoption, workers were no

longer allocated to a particular job. Instead, they could be allocated at the start of each

shift to any job for which they had accredited skills.

The elimination of demarcation between production and engineering streams was achieved

separately from the elimination of the demarcation within the production stream, due to one

stipulation in the work model. The work model guideline explicitly divides jobs into produc-

tion and engineering streams. This means that if a mine employs a work model (to eliminate

demarcation within the production stream), the demarcation between the production and

the engineering streams will be systematically entrenched. To eliminate the demarcation

between the two streams, management had to further negotiate with employees to include a

provision that explicitly eliminates the demarcation. For example, the Stratford Mine’s 2002

enterprise agreement explicitly states that “...there will be no demarcation of work between

production and engineering (Clause 3)”.

trial tribunals in Australia.
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2 Four possible explanations for how multi-tasking job

designs affect productivity

The previous section has shown that the Australian coal industry adopted multi-tasking

job designs by eliminating two types of task demarcations; (i) task demarcation between

the production and engineering streams, and (ii) task demarcation within the production

stream. The following section will explore how elimination of these task demarcations might

affect productivity. From interviews with several mine managers as well as a review of the

economic literature, I derived four possible hypotheses. This section details these hypotheses,

then shows that these hypotheses have different implications regarding which type of multi-

tasking would increase productivity, and which types of mines are most likely to adopt these

multi-tasking job designs.

[1] Redundancy elimination

Multi-tasking would enhance productivity through elimination of redundancy. A task con-

sists of a series of subtasks. As explained by Lazear (1998:450), when two tasks share a

common sub-task which can be performed by the same worker at the same time (when there

is a ‘task overlap’), bundling of these tasks eliminates a duplication of effort. Moreover, when

overlapping tasks are artificially split, one worker needs to pass a part of tasks to another

worker, creating unnecessary wait time for the other worker to arrive the site. Bundling of

tasks would avoid such a problem.

Interviews with several coal managers revealed that the demarcation between the pro-

duction and engineering streams created artificial redundancy. According to the task demar-

cation between the production and engineering streams, engineering workers are not allowed

to operate machines. Therefore, whenever maintenance requires operation of a machine, a

production worker must be present to operate the machine. For example, when engineering

workers fix the cylinder of a shovel, a production worker must be on hand to move the shovel
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into the position for them. If an engineering worker were allowed to operate the shovel, the

production worker need not attend the maintenance session. This illustrates how a task that

can be performed by one worker at the same time, takes two because of task demarcation.

Most of the mine managers that I interviewed suggested that elimination of such redundancy

would greatly improve efficiency in the mining industry.

The demarcation between the production and engineering streams also creats unnec-

essary wait time. Some maintenance tasks are simple enough for production workers to

perform. However, under the task demarcation between the two streams, an engineering

worker has to be called for, creating unnecessary wait time. An excerpt from Exxon Coal

(1998) effectively illustrates this problem.

“Replacing a trip rope (of a shovel) may require an operator 5 to 10 minutes.

Because this is a maintenance issue at our Australian coal mines, the time lost in

the call out of maintenance personnel to perform this work typically results in a

30 minute loss of production. Inefficiencies such as these, multiplied many times

across many activities at Australian coal industry mine sites, severely impede

productivity and cost competitiveness.”

The above descriptions show that the elimination of ‘between’ demarcation would elimi-

nate redundancy. Now let us consider the elimination of demarcation within the production

stream. Consider the following two tasks within the production stream: power shovel op-

eration and truck driving. The power shovel task consists of two subtasks: (1) extracting

coal from the coal seam, then (2) loading it onto the truck. The truck driving task consists

of (1) locating the truck so that the power shovel can load the coal and (2) delivering the

loaded coal to a coal washing facility. It appears that there is no common subtask that can

be performed by the same worker at the same time (i.e., there is no ‘task overlap’), since

completing the power shovel task would not complete any part of the truck driving task.
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The same reasoning would also suggest that there is no task overlap between different tasks

within the production stream (i.e., between operation of a power shovel and operation of a

bulldozer). This implies that there is no redundancy that can be eliminated by eliminating

the task demarcation within the production stream.

It should be noted that the absence of task overlap among production tasks does not

imply that skills required to perform these tasks do not overlap each other. In fact, there

may be a significant overlap among skills required to perform different production tasks. For

example, the skills required to drive a power shovel may be very similar to the skills required

to drive a truck. However, because one worker cannot operate both pieces of equipment at

the same time, bundling of these tasks would not eliminate any redundancy.

Thus, the implication of this hypothesis is that ‘redundancy elimination’ would affect

productivity only through the elimination of task demarcation between the production and

engineering streams.

[2] Input flexibility

Multi-tasking would affect productivity by increasing input flexibility. There are several

definitions of input flexibility according to the literature. Flexibility in adjusting the quantity

of inputs is one definition. The absence of task demarcation between the production and

engineering streams, as noted in the redundancy elimination hypothesis, is also one form

of input flexibility. In this paper, however, input flexibility is defined as the ability of a

mine to temporarily reassign workers to a task that requires greater manpower and, away

from a task requiring less manning, without necessarily changing the size of workforce.

The issue of input flexibility, as defined in this study, has attracted much attention from

economists. Some studies focus on the effect of input flexibility on the way firms adjust to

demand fluctuation (Haskel et al 1997), while others focus on the effect of unionization on

the substitution elasticities between different inputs (Freeman and Medoff 1982; Magnani

and Prentice 2006).
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When I interviewed several mine managers about how multi-tasking would affect pro-

ductivity at their mines, input flexibility was one of the most common answers. For example,

for a production team, some equipment may not be required for the whole shift. Thus, multi-

tasking would lead to a better utilization of labor. Some managers assert that multi-tasking

is useful in avoiding the impact of absenteeism on production stoppage. Furthermore, input

flexibility is useful when there is demand fluctuation, as production needs may change in

a demand shock. Since the 1990s, the Australian coal mining industry has faced increased

competition in the coal export market from new rivals, such as Indonesia. Therefore, the

ability to adjust for demand shocks might be particularly relevant.

Input flexibility is useful to the extent that a worker is capable of performing different

tasks. Although it may not be difficult to train engineering workers to operate machines for

maintenance purpose (such as changing the position of a machine), it would still be difficult

to train them to competently undertake the whole production process. Such training would

require engineering workers to make frequent trips to the coal field. On the other hand, it

would be much easier to train production workers to operate other types of equipment. Thus,

I expect that input flexibility would affect productivity mainly through the elimination of

task demarcation within the production stream. In fact, when mine managers refered to the

usefulness of input flexibility, they often provided examples of workers within the produc-

tion stream operating different types of equipment. For example, the CEO of Wesfarmers

describes the flexibility in his newly acquired Curragh mine in 2000 as

“Working arrangements are very flexible as multi-skilling arrangements are in

place. There are no demarcation issues at the mine. For example, an operator

will hop off one piece of equipment and operate another while somebody is at

their break (AAP Information Services Pty. Ltd. 2000).”
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Nonetheless, we cannot eliminate the possibility that engineering workers are reassigned to a

production task. Another way to examine the validity of the input flexibility hypothesis is to

look at who has adopted the multi-tasking job designs. Input flexibility would be more useful

in a mine facing greater demand fluctuation. In the empirical section, I use coal qualities

as proxies for coal demand uncertainty (thus proxies for demand fluctuation). Coal quality

is generally measured by the amount of impurities, such as ash, moisture, volatile matters

and sulphur. The greater the level impurity, the lower the coal quality. Although much

Australian coal is purchased on long term contracts, low quality coal is more likely to be

purchased in the spot market rather than on long term contract (Productivity Commission

1998b:D15). Thus, mines with low coal quality face greater demand uncertainty. The input

flexibility hypothesis predicts that mines with lower coal quality are more likely to adopt

both types of multi-tasking.

Thus, the input flexibility hypothesis has two implications. First, input flexibility would

affect productivity mainly through the elimination of demarcation ‘within’ the production

stream. Second, mines with low coal quality are more likely to adopt both types of multi-

tasking. However, the prediction regarding the productivity-enhancing effect of the elimina-

tion of ‘between’ demarcation is ambiguous.

[3] Enhanced task coordination

Multi-tasking may affect productivity by enhancing task coordination among production

team members. As noted by Lazear (1998:446), task coordination is easier if team members

know each other’s tasks. Better task coordination would translate into higher productivity.

This hypothesis is particularly applicable to multi-tasking within the production stream due

to the use of team work within the production stream. Coal extraction is typically performed

by a team of 5 production workers. For example, a shovel operator excavates coal, then loads

it directly onto a truck. According to mine managers, if a truck driver does not position the

truck properly, the shovel operator has to move the whole shovel to load the coal, causing
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inefficiency. Learning each other’s task would enable a better coordination of these tasks.

In contrast, a team structure seems to be absent between production and engineering work-

ers. Interaction between production and engineering workers occurs only when a production

worker has to call a maintenance crew to handle unexpected mechanical problems. There-

fore, the necessity of task coordination between production and engineering workers would

be far less frequent than among the production team members. Thus, ‘enhanced task coor-

dination’ should affect productivity mainly through the elimination of ‘within’ demarcation,

but the prediction regarding the productivity-enhancing effect of ‘between’ demarcation is

ambiguous.

[4] Better machine maintenance

During one interview, it was mentioned that multi-tasking between production and engi-

neering streams would benefit mines by facilitating more regular machine maintenance. The

elimination of ‘between’ task demarcation would enable production workers to perform some

maintenance tasks regularly, such as fault checking. Regular maintenance should reduce the

probability of major machine breakdowns, which would translate into higher productivity.

Thus, this hypothesis implies that elimination of task demarcation between the production

and engineering streams would have a positive effect on productivity.

3 Estimation methods

The existing literature has employed two competing methods to estimate the effect of “in-

novative work practices” on productivity. The first method is to specify a model in which

the introduction of a new work practice affects output per worker. This method is used by

Cooke (1994) and Macduffie (1995). Since output per worker is a standard measure of labor

productivity, this method has an intuitive appeal. A disadvantage, however, is its implicit

assumption that the introduction of a new work practice only affects labor productivity,

neglecting the possibility that it may affect capital productivity as well. The second method
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is to estimate a Cobb-Douglas or translog production function in which the introduction of

a new work practice affects the intercept of the production function. This method is used

by Hamilton et al. (2003) and Hempell (2005). In this specification, the introduction of

a new work practice affects both output per worker and output per capital by shifting the

entire production function. The fact that this method only allows a work practice to affect

the intercept may be restrictive. However, I use the second method since multi-tasking job

designs may affect not only output per labor but also output per capital by facilitating an

efficient utilization of equipment.

3.1 The definitions of multi-tasking and other work practice vari-
ables

Based on the discussions in Section 1, the reduction in the number of job classifications is a

reasonable variable that represents the elimination of the demarcation within the production

stream. The maximum number of job classifications is nine, as given by the P&E Award

standard job classifications. Thus, I define a variable, (ClassRedu), by

(ClassRedu) = 9 – (the # of job classifications in the enterprise agreement)

I constructed a binary variable, (MultiBetween) that attempts to show a genuine elim-

ination of demarcation between the production and engineering streams by using the fol-

lowing three criteria.

(MultiBetween) =1 (1) if the mine explicitly requires production and engineering workers

to multi-task across the streams, (2) if the mine eliminates the distinction between the

production and engineering work, and at the same time, explicitly requires an employee to

undertake any tasks that are allocated by the employer, or (3) if the mine allows production

and engineering workers to cross-train their core skills. If neither (1), (2) nor (3) holds, this

variable takes the value 0.

In order to separate the effect of multi-tasking from other changes in work practices, I
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examined enterprise agreements to find various changes in work practices that would affect

productivity. Table 1 shows the definitions of these work practice variables. Most notably,

these mines began to eliminate restrictions placed on the hiring and redundancy practices.

The P&E Award stipulates that mines should hire previously retrenched workers first when

increasing employment (Clause 27). The P&E Award also requires that mines should first

make redundant workers whose tenure is the shortest when reducing employment (Clause

24). (Staff) is equal to 1 if only one of these restrictions is removed, 2 if both restrictions

are removed, and 0 otherwise. Thus, (Staff) captures the effect of flexibility in adjusting the

employment size.

3.2 The production function estimation

The following is the basic production function specification.

log(Output)it = β1(MultiBetween)it + β2(ClassRedu)it (1)

+ γ′(Input V ariables)it + θ′Xit + ci + µit

where i denotes the mine, and t denotes the time period. Output is measured by annual

saleable coal production. The basic model is a translog production function where log of

input variables as well as their squares and cross products are included. Table 1 shows the

definition of input variables. The coefficient, β1, captures the effect of multi-tasking between

the production and engineering stream tasks, while β2 captures the effect of multi-tasking

within the production stream.

Xit is the vector of all other control variables listed in Table 1. Log of the thickness

of the seams is included as a thinner seam would negatively affect the output. To sepa-

rate the effects of multi-tasking from other work practices, various work practice variables

are included. Some mines were owned by foreign companies, notably the Oil Majors7 and

Japanese companies. To capture a possible managerial efficiency (or inefficiency) of these

7Shell, BP, Exxon and Esso
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foreign companies, I include Oil-Major ownership, Japanese ownership and their squares in

the model. Productivity may increase over time due to unobserved technological changes.

To capture such effects, I include a time trend variable t and its square. To control for year

specific productivity shocks, I include year dummy variables. The term, ci, is a mine-specific

time invariant unobserved effect that would affect coal production. A possible correlation be-

tween ci and other explanatory variables causes biases in the ordinary least square estimation

(OLS). Thus, we apply the fixed effect estimation to this model.

3.3 Instrumental variable estimation using coal qualities

If multi-tasking variables are correlated with the idiosyncratic error term, µit, the fixed

effect estimation of β1 and β2 could be still biased. Such correlations may occur if there is a

time varying unobserved effect that affects both production and the multi-tasking variables.

One such time varying unobserved factor could be the union density at each mine. Since

unions have strongly opposed the elimination of demarcations (Productivity Commission

1998a:123), union density would be negatively correlated with the adoption of multi-tasking.

At the same time, union density would directly affect productivity. If the union effects on

productivity are negative as documented by (Mitchell and Stone 1992; Bemmels 1987), this

would introduce a positive bias in the estimate of multi-tasking, since less-unionized (thus

more productive) mines are more likely to adopt multi-tasking job designs.

I address the above issues by using instrumental variable estimation. Valid instruments

should be correlated with multi-tasking variables, but not with time varying unobserved

effects such as union density. The instrumental variables are the coal quality variables,

listed in Table 1. Coal qualities are measured by the impurity contents of the coal. As

noted in the description of the input flexibility hypothesis, mines with low coal quality may

be more likely to adopt multi-tasking variables. It is unlikely, however, that coal quality
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has a direct impact on union density8. Table 2 shows the descriptive statistics of the coal

quality variables. Coal quality data are derived from the NSW Coal Industry Profiles9 and

the Coal Year Books10. We instrument the demeaned multi-tasking variables with demeaned

instrumental variables in the two stage least square (2SLS) procedure. Coal qualities change

over time, since the coal seams that are mined at a particular mine change over time.

We use the Kleibergen-Paap rank test (Kleibergen and Paap 2006) to test the relevance

of instruments, and Hansen’s J statistic to test the overidentifying restrictions. We also test

if multi-tasking variables can be treated as exogenous, since treating endogeneity when it is

actually exogenous is costly in terms of precision.

3.4 Data and descriptive statistics

Multi-tasking variables and other work practice variables are constructed by examining the

enterprise agreements. Since equipment data is only available for mines in the state of New

South Wales (NSW), data collection was confined to just those mines. All the enterprise

agreements certified after 1996 are available online11. Enterprise agreements certified before

1995 are obtained from the Australian Industrial Registry. The total number of enterprise

agreements used in the study is 97.

Table 1 shows the definitions of all the variables used in this study. The dependent

variable is the log of annual saleable coal production at each mine. We have four input vari-

ables. Employment is measured by the number of employees. Bulldozer usage is measured

by the sum of engine capacities. Truck usage is measured by the sum of loading capacities.

Excavator usage is measured by the sum of bucket sizes. Production and employment data

are provided by Coal Service Pty Ltd. NSW Coal Industry Profiles and Coal Year Books

contain yearly information about the equipment models as well as the number of each model

8If unions attempt to increase their membership in mines with higher coal qualities, coal qualities may
not be good candidates for instruments. Thus, the validity of these instruments will be formally tested.

9Published annually by NSW Department of Mineral Resources.
10Published annually by the Joint Coal Board.
11http://www.wagenet.gov.au
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of equipment used by a particular mine12. Capacity information of each piece of equip-

ment, such as the engine capacities of bulldozers, has been obtained by directly contacting

manufacturers, or via the manufacturers’ websites.

Data collection is confined to the mines that have operated at least some years during

the 1990s, since this is the period in which drastic changes in the bargaining system occurred.

Among those mines, there were some mines that first opened during the sample period. For

these, I dropped the first two years of observations, assuming new mines do not immediately

reach ‘normal’ operating conditions. In addition, since the NSW Coal Industry Profile was

not published in 1987-1988, these years are excluded from our sample. The final sample

contains 288 mine-year observations, containing 21 open-cut mines during the period 1985

to 2005. Table 2 contains descriptive statistics. It is worth noting the size of the sample.

The number of observations, 288, may appear to be rather small. Nevertheless, my sample

includes, on average, 84% of all the open-cut coal production in NSW for the period, with

NSW accounting for about 35% of all the open cut coal production in Australia in 2000.

Moreover, a small number of cross-sectional units is not uncommon for industry specific

research. For example, in a study of the productivity effect of human resource bundles in

US steel plants, Ichniowski et al. (1997) used 35 cross-sectional units over a 5-year period.

Figure 1 shows the sample average of the work practice variables by year. By 2001,

the sample average of (ClassRedu) is close to 6. Since a mine usually differentiates induc-

tion level jobs from ordinary jobs, the maximum (ClassRedu) is 7. This means that most

mines have significantly eliminated task demarcation within the production stream by 2001.

As for the demarcation between the production and engineering streams, only 18% of the

mines eliminated such demarcation by 2000. Nonetheless, by 2005, nearly 70% of the mines

eliminated such demarcation.

12For example, these reports may show that a particular mine has 3 pieces of Caterpillar D11. Caterpillar
D11 is a large size bulldozer.
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4 Estimation results

4.1 Checking the quality of instruments and possible exogeneity
of multi-tasking variables

Estimated coefficients for the first stage regressions are shown in Table 4 (see, fixed effect

results). The null hypothesis that the coefficients for the excluded instruments are jointly

equal to zero is rejected for both (MultiBetween) and (ClassRedu) at the 5% significance

level (F statistics are 3.4 and 6.9 respectively). The Kleibergen-Paap rank test also rejects

the null-hypothesis that model is underidentified at the 1% significance level (p-val=0.0015).

For both of the first stage equations, (Ash) and its square are not significant at the 5%

significance level. However, the redundancy test proposed by Breusch et al. (1999) rejected

the redundancy of these variables (p-val=0.0007). Based on the relevance of instruments,

we next test the overidentifying restrictions. Hansen’s J statistic is 12.3, with a degree of

freedom equal to 7 (p-val=0.09). Thus, at the 5% significance level, the test does not reject

the validity of instruments (that is, instruments are uncorrelated with the error terms).

The relatively small p-value may be a source of concern. However, this is probably due

to the small sample size. When I used the Cobb-Douglas specification instead, p-value for

the above null hypothesis increased to 0.61, providing additional support for the validity

of the instruments (results are not reported). Based on the validity of the instruments, I

test whether the multi-tasking variables can be treated as exogenous. The test statistic is

the C-statistic as described by (Hayashi 2000:220) which follows χ2
(2) distribution in this

case. The test statistics is 2.77 (p-val=0.25). Thus, the test rejects the endogeneity of the

multi-tasking variables (i.e., does not reject the exogeneity of the multi-tasking variables),

indicating that the multi-tasking variables should be treated as exogenous. When the Cobb-

Douglas specification is used, endogeneity is also rejected (p-value=0.90, full results are not

reported).
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One may be concerned that the instruments are weak, possibly leading to the rejection

of endogeneity. In fact, Shea’s partial R squares for both (MultiBetween) and (ClassRedu)

are small as reported in Table 4 (0.08 and 0.21 respectively). In order to further examine

the endogeneity of the multi-tasking variables, I have estimated, jointly, the following three

equations that explicitly account for the correlations of the error terms among the production

function and the first stage regressions.

¨log(Output)it = β1( ¨MultiBetween)it + β2
¨(ClassRedu)it + γ′Z̈it + (ρ1χi + e

(1)
it ) (2)

( ¨MultiBetween)it = ψ′11Z̈it + ψ′12( ¨Instruments)it + (ρ2χi + e
(2)
it ) (3)

( ¨ClassRedu)it = ψ′21Z̈it + ψ′22( ¨Instruments)it + (ρ2χi + e
(3)
it ) (4)

Double dots indicate that the variables are demeaned. The term, Zit, is the vector of all other

variables included in the production function. The term, (Instruments), is a vector of coal

quality variables. The variable, χi, is the ith mine specific unobserved variable that affects

all the equations. The coefficient, ρj for j=1,2,3, are the factor loads on the unobserved

variable. The terms, e
(j)
it for j=1,2,3, are the usual disturbance terms which are assumed to

be independent for all i, t and j, and assumed to be uncorrelated with all the regressors. Since

χi is not observed, (ρjχi + e
(j)
it ) are the error terms. Thus, these equations are identical to

the first and second stage regressions in the 2SLS procedure, except that the error terms are

now decomposed into two terms. A possible correlation among the error terms is captured

by χi when the factor loads, ρj, are not jointly equal to zero. Since endogeneity of the

multi-tasking variables is caused by the correlations among the error terms, we can test the

endogeneity by testing the null hypothesis that all the ρj for j=1,2,3, are simultaneously

equal to zero. Under this null hypothesis, the multi-tasking variables are exogenous. Thus,

the failure to reject this null means that multi-tasking variables are exogenous. I estimate

all the equations jointly by maximum likelihood estimation assuming that χi are distributed
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normally with mean zero and variance one, and that e
(j)
it are distributed normally13. The

likelihood function is shown in the appendix.

Table 3 shows the maximum likelihood estimation results (see M.LIK). The estimated ρj

are extremely small and statistically insignificant (ρ1=−2−18, ρ2=−4−19, ρ2=−3−18). Other

coefficients are almost identical to the fixed effect results (FE.1). The χ2
(3) statistic for the

null hypothesis that all ρj are simultaneously equal to zero was 0.31. Thus, we do not reject

this null hypothesis, indicating that the multi-tasking variables are exogenous. The fixed

effect, again, appears to be the most preferred method.

The rejection of the endogeneity of the multi-tasking variables is not unreasonable judg-

ing from circumstantial evidence. The possible presence of unobserved time varying het-

erogeneity, such as union density, was one reason I suspected the endogeneity of the multi-

tasking variables. However, according to the Productivity Commission (1998b:C12), union

density for the whole Australian coal mining industry was above 92% between 1986 and 1998.

Such high unionization suggests that there was not a significant variation in the union density

among mines, which eliminates one reason to suspect the endogeneity of multi-tasking.

4.2 Estimated effects of multi-tasking on productivity

Table 3 reports selected coefficients for the estimation results of the translog production

function. All other coefficients are presented in Table 6. The model, FE.1, is the basic fixed

effect model. When fixed effects are controlled for, the coefficient for (MultiBetween) drops

slightly from 0.32 to 0.29. In contrast, the coefficient for (ClassRedu) drops significantly from

0.049 to 0.017, a more than 60% drop in coefficient. The results for 2SLS model deviate

considerably from that of the fixed effect model. However, the endogeneity of multi-tasking

variables is rejected, as noted in the previous section. The estimated coefficients for the

maximum likelihood estimation (M.LIK) are almost identical to the fixed effect coefficients

13I correct the estimated standard errors by multiply them by√
(N −#ofparameters)/(N −#ofparameters−#ofmines) to account for the fact that all the

variables are demeaned.
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(FE.1), further increasing our confidence that multi-tasking variables can be treated as

exogenous. Thus, interpretation of the results will be based on the fixed effect results.

Based on FE.1, multi-tasking between production and engineering streams has a sig-

nificant impact on productivity. The estimated coefficient for (MultiBetween) indicates that

eliminating the demarcation between the production and engineering streams would increase

saleable coal production by as much as 29%, after controlling for fixed effects, and holding all

other variables constant. In contrast, I did not find evidence that elimination of demarcation

within the production stream increases productivity. Although the sign of the coefficient

for (ClassRedu) is positive (0.017), it is not statistically significant at any of the conventional

significance levels.

I also estimated fixed effect models for two other data specifications in order to check

for robustness. The model, FE.2, drops all the observations in and after year 1998. In

July 1998, the industrial tribunal of Australia14 eliminated various clauses from the P&E

Award, such as the clauses restricting hiring and redundancy practices. This incidence is

referred to as ‘Award Simplification’ (Production Commission 1998a:74). Although I believe

that the effects of ‘Award Simplification’ are properly captured by various work practices

variables included in the model, it may be possible that some important changes are not

fully captured by these variables. Since the adoption of (MultiBetween) accelerated after

1998, it is possible that (MultiBetween) captures ‘Award Simplification’ effects, rather than

the effect of multi-tasking. In order to eliminate such possibility, I dropped observations

from 1998 onward. As such, the coefficient for (MultiBetween) increased slightly to 0.33,

remaining statistically significant. The coefficient for (ClassRedu) also increased slightly to

0.02, but remains statistically insignificant.

The FE.3 model drops mines that have contracted out all the production and engineer-

14The Australian Industrial Relations Commissions, which was formally called the Industrial Relations
Commissions.
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ing tasks to coal contractors. For all-contracted mines, the frequency of agreement updates

appears to be lower than non-contracted mines. Non-contracted mines usually update en-

terprise agreements every 2 or 3 years. However, for some of all-contracted mines, enterprise

agreements were left un-updated for nearly 5 years15. This raises the concern that, in all-

contracted mines, various changes in work practices may occur through informal channels

rather than through enterprise agreements. This could cause miscoding of the multi-tasking

variables. To eliminate the possibility that my results are driven by miscoding, I drop all-

contracted mines from the data. The effect of (MultiBetween) increased slightly to 33%,

and is statistically significant at the 1% significance level. The coefficients for (ClassRedu)

dropped significantly to 0.004, however.

The last column of the Table 3 allows for dynamics by including a lag of the output

variable. Estimation is based on the GMM procedure proposed by Arellano and Bond (1991).

The validity of this model hinges on the assumption that there is no serial correlation greater

than the lag of 2. The Arellano and Bond m2 statistic does not reject the absence of serial

correlation at the lag of 2 at any of the conventional significance levels (p-value=0.37),

thus validating the model. The estimated coefficient for (MultiBetween) is 0.27 and highly

significant, while the estimated coefficient for (ClassRedu) is small (0.006) and statistically

insignificant.

Choosing the Cobb-Douglas production function instead of the translog production func-

tion does not significantly alter the results, neither qualitatively nor quantitatively. Co-

efficients and standard errors for (MultiBetween) in the Cobb-Douglas specifications are

0.29(0.12), 0.38(0.16), 0.33(0.17), and 0.21(0.09) for FE.1, FE.2, FE.3 and GMM models re-

spectively, all of them statistically significant at the 5% level. The coefficients for (ClassRedu)

are not statistically significant for any of the models, however (results are not reported).

15For example, Liddel Mine’s 2000 enterprise agreements with the coal contractor Hunter Valley Earth
Moving Company were not updated until 2005.
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For all of the fixed effect and the dynamic specifications, multi-tasking between the pro-

duction and engineering streams appears to have a large effect on productivity, while the

effect of multi-tasking within the production stream is small and statistically insignificant.

The estimated coefficient for (MultiBetween) suggests that the elimination of task demarca-

tion between production and engineering streams would increase saleable coal production by

27% to 33%, all else held constant. This effect is surprisingly large when compared to past

studies concerning multi-tasking. Katz et al. (1987) did not find evidence that multi-tasking

job designs, such as reduced job classifications, would enhance productivity. Cappelli and

Neumark (2001) found that job rotation had a negative effect on productivity (see Table 3

of their study). The literature on labor market flexibility does not offers estimates for the

effects of multi-tasking on productivity (Machin and Wadhwani 1991; Freeman and Medoff

1982). Thus, my result provides fresh evidence that multi-tasking has a large impact on

productivity.

Finally, the coefficient for (Staff) is statistically significant for all the fixed effect and

dynamic specifications (except for FE.2), ranging from 0.14 to 0.18. The coefficient of 0.14

means that the elimination of both hiring and redundancy restrictions would increase coal

production by 0.14 × 2=28%. Thus, flexibility in adjusting the number of employees has a

significant effect on productivity. The coefficient for production bonus is also statistically

significant for most of the fixed effect and dynamic specifications, ranging from 0.07 to 0.18.

5 How multi-tasking job designs affect productivity

Based on the estimated results, I analyze the four possible hypotheses for how multi-tasking

affects productivity. Among these hypothesis, only two are supported by the data. First, the

redundancy elimination hypothesis is supported by the results. As explained in Section 2, we

expect that redundancy elimination affects productivity only through multi-tasking between

the production and engineering streams. Thus, the strong effect of (MultiBetween) coupled
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with the small and insignificant effect of (ClassRedu) is consistent with this hypothesis.

When the Australian coal mining industry was criticized for its perceived inefficiency in the

1990s, most of the complainants by mine managers were that such demarcations created

artificial redundancies (Productivity Commission 1998a:124). Our results show that mine

managers’ concerns were indeed valid.

Second, the better machine maintenance hypothesis implies that the effect of ‘between’

multi-tasking is positive (See Section 2). Thus, the positive and significant effect of (Multi-

Between) supports (or does not reject) the hypothesis. Nonetheless, to what extent the

elimination of ‘between’ task demarcation reduces major machine breakdowns remains an

empirical question, since we do not have data for machine breakdown frequencies. If multi-

tasking does not decrease major machine breakdowns significantly, then the strong effect of

(MultiBetween) should be attributed to the redundancy elimination explanation.

The input flexibility hypothesis is not supported by the data. As noted in Section

2, this hypothesis implies that (i) input flexibility affects productivity mainly through the

elimination of task demarcation within the production stream, and (ii) mines with low coal

quality are more likely to adopt both types of multi-tasking. Thus, the small and insignificant

effect of (ClassRedu) is not consistent with the first implication. Table 4 shows the estimated

effects of coal qualities on the adoption of multi-tasking variables. The effects of coal qualities

on (MultiBetween) are estimated using a Logit model as well as OLS and a fixed effect model.

The effects of coal qualities on (ClassRedu) are estimated using OLS and fixed effect. These

models use individual coal quality variables as well as (SumImpurities) which is the sum of all

the individual coal impurity variables. The coefficients for coal quality variables are jointly

statistically significant at the 1% significance level for all the models, except for (ClassRedu)

when (SumImpurities) is used as the coal quality variable.

The presence of square terms makes it difficult to assess the impact of coal quality on

the adoption of multi-tasking. Thus, partial effects are computed and presented in Table
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5. Many partial effects show the expected positive sign, i.e., higher impurity contents are

associated with greater use of multi-tasking. Nonetheless, there are a non-trivial number

of cases where partial effects show negative signs (for example, Sulphur for MultiBetween,

SumImpurities, Sulphur and Moisture for ClassRedu). Therefore, the evidence is not strong

enough to conclusively support the second prediction of the input flexibility hypothesis.

It is surprising that one of the most common explanations for how multi-tasking affects

productivity is not supported by the data. This may mean that mines are using other meth-

ods to adjust for demand fluctuation. When one mine supervisor at the Liddell Mine was

asked how a mine would adjust to demand fluctuation, he mentioned that the common meth-

ods are adjusting inventories, changing overtime, changing the number of rosters, working

weekends, or layoffs. Because mines can use these methods, input flexibility may not have

been the most effective method to adjust for demand fluctuation.

Finally, the insignificant effect of (ClassRedu) is inconsistent with the enhanced task

coordination hypothesis, as enhanced task coordination is expected to affect productivity

mainly through multi-tasking within the production stream.

6 Conclusion

After the 1990s, the Australian coal industry eliminated two types of task demarcations: (I)

the demarcation between the production and maintenance stream tasks and (II) the demar-

cation within the production stream. Using data covering 1985-2005, I estimated the effect

of the elimination of these demarcations on productivity, then analyzed several explanations

for how multi-tasking would affect productivity. The results show that the elimination of

‘between’ demarcation would increase coal production by 27% to 33%, while the elimination

of ‘within’ demarcation has no effect on productivity. These patterns are not consistent

with the most common explanation for how multi-tasking affects productivity: input flex-

ibility. This study demonstrates that input flexibility affects productivity mainly through
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the elimination of the ‘within’ demarcation. The insignificant effect of the elimination of

the ‘within’ demarcation is, thus, inconsistent with the input flexibility hypothesis. Further-

more, the correlation between demand uncertainty and the adoption of multi-tasking was

weak, leading to the rejection of that hypothesis. These patterns are better explained by

the redundancy elimination hypothesis; the bundling of ‘overlapping tasks’ reduces dupli-

cation of effort and wait time. It has been shown that the ‘between’ demarcation creates

artificial redundancy such as requiring production workers to attend maintenance sessions,

but the ‘within’ demarcation does not necessarily create such a redundancy. The strong

effect of ‘between’ multi-tasking, coupled with the small and insignificant effect of ‘within’

multi-tasking is, thus, consistent with the redundancy elimination hypothesis. In addition,

the results are also consistent with the hypothesis that multi-tasking affects productivity by

facilitating more regular machine maintenance, but inconsistent with the hypothesis that

multi-tasking affects productivity by improving task coordination among production team

members.
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Table 1: Definitions of variables

Variables Definitions

Other work practice variables
(Staff) Sum of the following variables.

(Flex hire)=1 if eliminate hiring restriction. (a)
(Flex redun)=1 if eliminate redundancy restrictions. (b)

(Productivity bonus) 1 if a mine employs a mine-wide bonus where all workers
receive equal piece rate depending on mine level coal production.

(Continuity) Sum of the three dummy variables below.
(Staggered break)=1 if the enterprise agreement requires
staggered meal breaks to ensure continuity of operations.
(Hot seat change)=1 if the enterprise agreement requires
staggered shift changes to ensure continuity of operations
(Shift12)=1 if 12-hour shift is possible.

(Communication) 1 if regularly held labor management meeting exists.
(Monitoring) 1 if individual performance appraisal or team-based

monitoring system exists.
(Advanced bonus) Sum of the following variables: (Indiv bonus)=1 if individual

performance-based bonus exists; (Profit sharing)=1 if it exists.
(No Custom) 1 if the mine eliminates ‘Customs and Practices’ provision.
Dependent, inputs, and other control variables
(Output) Annual saleable coal production in millions of tonnes.
(Employment) Number of employees during the fiscal year.
(Excavator) Sum of the bucket capacities (in m3) of excavating equipment.
(Bulldozers) Sum of engine capacities (in kilowatts) of bulldozers.
(Trucks) Sum of the loading capacities of trucks (in tonnes).
(Thickness) Average thicknesses of coal seams currently mined.
(Oil-Ownership) Oil Majors’ ownership (Shell, Exxon, BP & Esso) in (%/100).
(JPN Ownership) Japanese ownership in (%/100).
Coal quality variables
(Ash) Air dry ash content of coal in %.
(Sulphur) Air dry sulphur content of coal in %.
(VolatMatter) Air dry volatile matter content of coal in %.
(Moisture) Air dry moisture content of coal in %. (c)
(Moisture info missing) Dummy variable indicating moisture information is missing.

(a)P&E Award required that mines should hire previously retrenched worker first when increasing employ-
ment (Clause 27). (b)P&E Award required that mines should first make redundant workers whose tenure is
the shortest when reducing employment (Clause 24). (c) Whenever the moisture information is missing, the
mine average of (Moisture) is imputed.
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Figure 1:
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This figure shows the trend in yearly average of work practice variables over our sample
period
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Table 2: Summary statistics for selected variables

Variables Obs Mean St Dev Min Max

Multi-tasking and work
practice variables
MultiBetween 288 0.20 0.40 0 1
ClassRedu 288 3.49 2.78 0 7
Staff 288 0.53 0.80 0 2
Product Bonus 288 0.39 0.48 0 1
Continuity 288 1.33 1.10 0 3
Advanced Bonus 288 0.07 0.25 0 1
Communication 288 0.36 0.47 0 1
Monitoring 288 0.32 0.46 0 1
No Custom 288 .49 .50 0 1
Dependent and control
variables
Output 288 2,941.3 2,407.8 130 13,749.02
Employment 288 279.7 212.6 20 1,160
Excavator 288 149.1 93.8 13.8 572.9
Bulldozer 288 4,003.5 2,490.33 522 15,918
Trucks 288 3,281.42 2,461.65 180 12,530
Thickness 288 3.10 1.88 1.27 10
Oil-Ownership 288 0.08 0.26 0 100
JPN ownership 288 0.17 0.28 0 1
Coal quality and instrument
Ash 288 12.91 5.80 8 35
VolatMatter 288 33.14 2.47 23 38.25
Sulphur 288 0.69 0.21 0 1.65
Moisture 288 3.36 2.01 2 10
(Moisture info missing) 288 0.24 0.43 0 1

a. In Australia, fiscal year starts on July 1st. When a new enterprise agreement has not started at the same
time with the fiscal year, the values of the work practice variables are the fraction of the year covered by the
enterprise agreement.
b. The values of work practice variables are constant until they are changed by the enterprise agreements
that replace the old ones.
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Table 3: Production function estimation Results. Dept Var=log(Saleable Coal Production)

Robustness Check

Variables FE.1 M.LIK OLS 2SLS FE.2 FE.3 GMM

MultiBetween 0.29*** 0.28*** 0.32*** 0.025 0.33** 0.31** 0.27***
(0.1) (0.006) (0.1) (0.28) (0.14) (0.13) (0.05)

ClassRedu 0.017 0.017 0.049** 0.027 0.023 0.004 0.006
(0.015) (0.01) (0.021) (0.019) (0.018) (0.015) (0.008)

Staff 0.14*** 0.14*** 0.14** 0.17*** 0.03 0.16*** 0.18***
(0.04) (0.04) (0.05) (0.05) (0.05) (0.04) (0.03)

Product Bonus 0.16*** 0.16*** 0.29*** 0.11 0.05 0.18*** 0.07*
(0.05) (0.03) (0.09) (0.08) (0.12) (0.04) (0.04)

Continuity 0.014 0.015 -0.13** 0.04 0.008 0.014 -0.01
(0.03) (0.04) (0.06) (0.06) (0.04) (0.034) (0.023)

No Custom -0.058 -0.057*** -0.11 -0.07 -0.07 -0.05 -0.04
(0.08) (0.01) (0.1) (0.07) (0.09) (0.08) (0.05)

Advanced bonus -0.04 -0.04 -0.05 -0.008 -0.06 -0.05 -0.07
(0.1) (0.03) (0.11) (0.07) (0.12) (0.1) (0.06)

Communication 0.07 0.07 -0.02 0.07 0.0004 0.03 0.12***
(0.05) (0.04) (0.05) (0.05) (0.068) (0.04) (0.04)

Monitoring -0.05 -0.05*** -0.0004 -0.06 0.01 -0.02 0.04
(0.09) (0.02) (0.08) (0.06) (0.08) (0.09) (0.05)

t 0.06 0.07*** 0.13** 0.09 0.14** 0.11* -0.21
(0.05) (0.03) (0.06) (0.10) (0.065) (0.05) (0.39)

t2 -0.002 -0.002 -0.006 -0.004 -0.01 -0.006 0.02
(0.005) (0.009) (0.007) (0.01) (0.007) (0.006) (0.03)

log(output)t−1 0.18***
(0.04)

ρ1 −2× 10−18

(2× 10−15)
ρ2 −4× 10−19

(5× 10−16)
ρ3 −3× 10−18

(10−17)

R2(within) 0.88 0.94 0.87 0.86 0.88
# observations 288 288 288 288 167 253 240
H0 Under- 23.3 Arellano
identified(p-val) (0.003) Bond
Hansen’s J 12.3 test p-val
(p-val) (0.09) =0.37
H0: multi-tasking 2.77
exogeneous(p-val) (0.25)

The coefficients for all other variables are presented in Table 6. Underidentification test is based on
Kleibergen-Paap (2006). Inside the parentheses are cluster robust standard for fixed effect specifications.
Heteroschedasticity robust standard errors are reported for 2SLS and GMM. *Significant at 0.1, ** at 0.05,
*** at 0.01.
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Table 4: Effect of coal qualities on the adoption of multi-tasking

Dept Var=MultiBetween Dept Var=ClassRedu

Variables (Logit) (OLS) (Fixed (OLS) (OLS) (Fixed
effect) effect)

(SumImpurities) 11.00*** -0.37
(4.20) (0.25)

(SumImpurities)2 -0.09*** 0.003
(0.002) (0.003)

(Ash) 0.067** 0.04* 0.43** 0.18
(0.03) (0.024) (0.17) (0.18)

(Ash)2 -0.0007 -0.0001 -0.007** -0.006*
(0.007) (0.0006) (0.004) (0.003)

(VolatMatter) -0.69*** 0.02 0.87 -2.48***
(0.13) (0.13) (0.57) (0.82)

(V olatMatter)2 0.012*** 0.0001 -0.013 0.043***
(0.002) (0.002) (0.009) (0.014)

(Sulphur) -0.59 -1.22** 0.93 19.81***
(0.40) (0.63) (2.58) (3.51)

(Sulphur)2 0.34 0.53* -2.25* -11.39***
(0.21) (0.32) (1.40) (1.84)

(Moisture) 0.24*** 0.22*** -0.88* -0.69
(0.08) (0.08) (0.46) (0.50)

(Moisture)2 -0.02*** -0.02*** 0.063 0.04
(0.007) (0.007) (0.40) (0.043)

All other control
vars except multi- No Yes Yes Yes Yes Yes
tasking vars

R Squared 0.88 0.78 0.77 0.80 0.82 0.86
H0: Coal qualities 10.9 7.75 3.44 1.23 5.90 6.99
not joint significant (0.00) (0.00) (0.00) (0.29) (0.00) (0.00)
(χ2 or F, p-val)
Shea’ Partial R2 0.08 0.22

a. Except for the logit model, all the variables treated as exogenous in the 2SLS estimation of production
function (equation (1)) are included in the estimation. Thus, fixed effect results are identical to the first
stage regressions of the 2SLS procedure.
b. The logit model excludes the cross products and the square terms of the input variables to avoid multi-
collinearity.
c. (MultTask Between) can take fraction (See footnote of Table 2). To discretize the variable, I transformed
it as (MultTask Between)=1 if it is greater than 0.5.
d. Insider parentheses are robust standard errors. *Significant at 0.1, **Significant at 0.05, ***Significant
at 0.01
e. Test statistics for the null hypothesis are F-statistics except for Logit model where χ2

(2) statistic is reported.
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Table 5: Partial effects of coal qualities on the adoption of multi-tasking (based on the results
in Table 4)

Dept Var=MultiBetween Dept Var=ClassRedu

Models (Logit) (OLS) (Fixed (OLS) (OLS) (Fixed
effect) effect)

∂P
∂CoalQual

∂Multi
∂CoalQual

∂Multi
∂CoalQual

∂ClassRedu
∂CoalQual

∂ClassRedu
∂CoalQual

∂ClassRedu
∂CoalQual

SumImpurities 0.035*** -0.001
(10.9) (0.91)

Ash 0.046*** 0.042*** 0.24** 0.02
(7.25) (6.66) (3.41) (1.83)

VolatMatter 0.13*** 0.03** 0.004 0.36***
(24.47) (3.03) (1.41) (4.58)

Sulphur -0.13 -0.47* -2.54*** 4.09***
(1.23) (2.63) (19.78) (19.77)

Moisture 0.10*** 0.10** -0.45** -0.42***
(5.39) (4.42) (4.39) (4.99)

a. Inside the parentheses are the test statistics for the null hypothesis that the coefficients for the coal quality
variable and its square are jointly equal to zero. They are F statistics, except for Logit model where chi
square statistic is used. *Significant at 0.1, **Significant at 0.05, ***Significant at 0.01
b. Partial effects are computed at the sample average of each variable, except for the logit model. For the
logit, the sample average of the partial effects is shown.
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Table 6: Other coefficients on production function estimation

Variables FE.1 M.LIK OLS 2SLS FE.2 FE.3 GMM

(JPN ownership) 1.07* 1.06*** -0.41 0.61 0.78 0.79* 0.74
(0.59) (0.02) (0.43) (0.53) (1.09) (0.43) (0.48)

(JPNownership)2 -0.57 0.57*** 0.2 -0.25 -0.36 -0.46 -0.31
(0.67) (0.005) (0.42) (0.5) (1.02) (0.5) (0.82)

(Oil Ownership) -1.56 -1.55*** 0.91** -1.72 -0.053 0.26 -2.78***
(1.03) (0.006) (0.37) (0.75) (1.87) (0.43) (0.58)

(OilOwnership)2 1.8 1.8 -1.23*** 1.85 0.05 -0.25 3.66***
(1.14) (0.004) (0.4) (0.85) (1.68) (0.45) (0.75)

log(Employment) 4.07*** 4.06*** 1.45 4.07*** 1.8 4.18*** 4.29***
(0.86) (0.04) (1.22) (0.68) (1.44) (0.62) (0.56)

log(Excavator) -1.23* -1.21*** 0.86 -1.38* -2.42* -1.05 -0.94
(0.7) (0.02) (1.36) (0.82) (1.35) (0.66) (0.78)

log(Bulldozer) -1.30 -1.30*** -2.35 -0.93 0.14 -0.79 -0.63
(1.2) (0.007) (1.46) (1.01) (1.69) (1.18) (0.82)

log(Truck) -0.23 -0.24*** 1.67 -0.31 1.45 -0.35 -0.88
(0.66) (0.04) (1.04) (0.62) (1.11) (0.68) (0.6)

log(Thickness) -0.18 -0.17*** 0.05 -0.16 0.06 -0.17 -0.36***
(0.15) (0.04) (0.078) (0.15) (0.18) (0.16) (0.1)

log(Employment) -0.026 -0.025 0.24 0.04 0.51** 0.21 -0.14
×log(Excavator) (0.16) (0.14) (0.18) (0.16) (0.21) (0.1) (0.11)
log(Employment) -0.32* -0.32 -0.09 -0.37*** -0.29 -0.45*** -0.32***
×log(Bulldozer) (0.16) (0.38) (0.22) (0.14) (0.22) (0.12) (0.12)
log(Employment) -0.16 -0.16 -0.05 -0.13 0.18 -0.24* -0.26**
×log(Truck) (0.15) (0.12) (0.14) (0.14) (0.25) (0.13) (0.11)
log(Excavator) 0.027 0.026 -0.60* 0.06 0.18 -0.01 0.19
×log(Bulldozer) (0.18) (0.12) (0.31) (0.2) (0.28) (0.2) (0.15)
log(Excavator) 0.19 0.18 0.19 0.12 0.08 0.031 0.07
×log(Truck) (0.21) (0.30) (0.19) (0.18) (0.2) (0.17) (0.2)
log(Bulldozer) 0.006 0.008 0.08 0.1 -0.05 0.08 0.18
×log(Truck) (0.13) (0.35) (0.16) (0.15) (0.16) (0.13) (0.12)
log(Employment)2 0.05 0.05 -0.07 0.04 -0.23* 0.08 0.15**

(0.08) (0.44) (0.1) (0.09) (0.12) (0.07) (0.07)
log(Excavator)2 -0.02 -0.02 0.15 -0.01 -0.25 -0.02 -0.03

(0.12) (0.15) (0.19) (0.12) (0.18) (0.13) (0.09)
log(Bulldozer)2 0.19 0.19 0.32* 0.13 0.07 0.18 0.008

(0.13) (0.13) (0.17) (0.12) (0.17) (0.15) (0.12)
log(Truck)2 0.01 -0.01 -0.19*** -0.02 -0.15 0.05 0.026

(0.06) (0.61) (0.05) (0.06) (0.12) (0.06) (0.053)
Constant 1.06

(4.5)

This table shows all other coefficients not shown in Table 3 except for year dummies.
Inside the parentheses are cluster robust standard errors except for 2SLS. *Significant at 0.1, ** at 0.05, ***
at 0.01.
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Appendix: The likelihood function

For notational simplicity, rewrite the equations (2), (3) and (4) respectively as

Y1it = α′Xit + (%1χi + e
(1)
it ) (5)

Y2it = β′1Xit + γ′1Zit + (%2χi + e
(2)
it ) (6)

Y3it = β′2Xit + γ′2Zit + (%3χi + e
(3)
it ) (7)

where all the variables are demeaned. Xit is the vector of all the regressors included in the

production function. Zit is the excluded instruments. We assume that e
(j)
it ∼ N(0, σ2

(j))

for j=1,2, and 3, and assume that χi = N(0, 1). The likelihood contribution of ith mine

conditional on χi is written as

Li(Φ|χi) =
∏

t

φ(Y1it − α′Xit − ρ1χi, σ
2
(1))

× φ(Y2it − β′1Xit − γ′1Zit − ρ2χi, σ
2
(2)) (8)

× φ(Y3it − β′2Xit − γ′2Zit − ρ3χi, σ
2
(3))

where φ(µ, σ2) is a normal density function with mean µ and variance σ2. To obtain the

unconditional likelihood function, we integrate out χi by applying Gauss-Hermite approxi-

mation to normal integral with 25 mass points. This is written as

Li(Φ) ≈
25∑

k=1

wkLi(Φ|vk) (9)

where weights wk and support vk are computed by the Gauss-Hermite quadrature. The

likelihood function is obtained by multiplying Li(Φ) over all i.
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