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Abstract5

This study examines the effects of temperature and precipitation on the mean and6

variance of seasonal rice yield in Andhra Pradesh, India, over a period of 33 years7

(1969-2002). For this purpose, two distinct approaches are employed: (i) panel data8

analysis using Just and Pope stochastic production function and (ii) quantile regression9

approach. The first approach suggests that, in general, an increase in temperature as10

well as inter-annual variance of temperature and rainfall adversely affect the mean crop11

yield, while the effect of increase in precipitation highly depends on the cropping season.12

Furthermore, an increase in average temperature, rainfall and their respective inter-13

annual variance are likely to increase inter-annual variability in crop yield. Second,14

the quantile regression reveals that rice yield’s sensitivity to climate change differs15

significantly across the quantiles of yield distribution. In particular, the adverse effect16

of climate change is found to be more profound for the crop yields in lower quantiles.17

In addition, evidences in support of heterogeneity in the impact of climate change18

across the agro-climatic zones are also found. Overall, these findings call for a more19

location specific adaptation policies to address heterogeneity and an integrated policy20

framework covering the downside risk to build resilience in the food security system.21
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1 Introduction25

Though the extent of climate change may still remain debatable, the issue of its occur-26

rence is almost settled now. Evidences of changes in temperature, precipitation, and extreme27

weather events have been found on a scientific basis (IPCC (2007)). These changes and their28

effects are likely to affect global socio-economic and environmental systems in various ways.29

Since climatic factors serve as direct inputs to agriculture, any change in climatic factors30

is bound to have a significant impact on crop yield and production. This area has caught31

attention of researchers in the recent times as evident by the growing number of studies on32

the impact of climate change on agriculture. Previous studies have shown a significant effect33

of change in climatic factors on average crop yield (See, e.g., Dinar et al. (1998), Seo and34

Mendelsohn (2008), Mall et al. (2006) and Cline (2007)).35

While many studies have examined the impact of climatic factors on mean crop yield,36

how climate affects its variability has not been investigated much especially in agriculture-37

based developing economies where there would likely be more serious repercussions in terms38

of food security, inequality and economic growth. Furthermore, the downside risks of the39

impact of climate change (Tol (2008)), which is a critical concern in agriculture (Kingwell40

(2006)), have not been incorporated in previous studies estimating its impact across output41

distribution. This study aims to answer these questions in the context of the coastal state42

of Andhra Pradesh, India.43

The way climate change will affect agricultural productivity is expected to vary depending44

upon various factors including geography and technology levels.1 While an overall significant45

damage of 3.2% is expected in the global agriculture production by the 2080s under business46

as usual scenario, it is found that the losses may even go up to 15.9% if the carbon fertilization47

effect is not realized.2 Industrial countries are likely to observe a loss of 6.3% in agricultural48

1We examine effect of climatic variables, i.e., temperature and precipitation (both mean and variability),
rather the effect of climate change on crop yield. Of course, this will have direct implications for climate
change. The latter involves forecasting the future changes in crop yield under the projected climate change
scenarios, which is beyond the scope of this study.

2Increased concentration in carbon dioxide may increase growth rate of certain plant species and this
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Table 1: Summary estimates for impact on global agricultural output potential by 2080

output. However, developing countries, predominantly located near the lower altitude, are49

likely to incur a much greater loss quantified at 21% (Cline (2007)). A summary estimate for50

impact of climate change on world agricultural output potential by the 2080s is presented in51

Table 1.52

Many previous studies have shown that India is likely to witness one of the highest53

agricultural productivity losses in the world in accordance with the climate change pattern54

observed and scenarios projected. The projected agricultural productivity loss for India55

by 2080 is about 30% even after taking the expected positive effect of carbon fertilization56

on yield into consideration (Cline (2007)). Another study finds that projected agriculture57

production loss in India by 2100 lies between 10% to 40% after taking carbon fertilization58

effect into account (Aggarwal (2008)). It has also been shown that the adverse climate59

change due to brown clouds and greenhouse gases has already caused a slowdown in rice60

yield growth during the past two decades (Auffhammer et al. (2006)).61

Two major methodologies employed in previous studies to examine the impact of cli-62

mate on agriculture3 are: Agronomic models (Mearns et al. (1997)) and Ricardian models63

phenomenon is termed as carbon fertilization effect.
3It should be noted here that there is significant difference between weather and climate. Weather is what

we observe over days or weeks and Climate is how the atmosphere behaves over relatively long periods of time
(National Aeronautics and Space Administration (2005)). A number of studies have investigated weather
related effect on crop yield. For example, Schlenker and Roberts (2009) find a non linear and asymmetric
relationship between crop yield and weather variables using a fine-scale weather data set. In another study,
Staggenbors et al. (2008) discuss the effect of rainfall and temperature stress on grain sorghum and corn.
This study, however, does not consider variables like daily temperatures, growing days or daily precipitation.
We use an average of temperature and rainfall data for two different cropping seasons here which extends
over a period of more than 30 years, since this study intends to analyze the impact of climate (or variation
in climatic variables) on crop yield.
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(Mendelsohn and Rosenberg (1994)). The agronomic models simulate a laboratory-type set64

up and provide data on climatic factors and crop growth. Although the agronomic models65

provide a controlled and randomized application of environmental conditions, it does not66

take adaptive behavior of an optimizing farmer into account. On the other hand, Ricardian67

models measure the impact of climatic factors through their contribution to farmland-prices68

and have been extensively used for incorporating farm level adaptation (Mendelsohn et al.69

(1996)). Since availability of land prices as well as non-existence of efficient land markets are70

two major obstacles in applying the Ricardian method to most of the developing countries,71

Semi-Ricardian models using data on average profits instead of land prices are used in two72

major studies on India and Brazil (Seo and Mendelsohn (2007) and Dinar et al. (1998)).73

One of the major shortcomings of a Ricardian model is the omitted variable problem74

because it does not take time-independent location-specific factors such as unobservable75

skills of farmers and soil quality into account. Additionally, yield variability has been found76

significant in many other studies but a Ricardian model is not capable of capturing the effect77

of changes in climatic factors on it (Mearns et al. (1997)). Schlenker and Roberts (2009)78

show that a panel data approach can take care of the omitted variable problem by including79

district dummies in the model, though the issue of effect on yield variability still remains80

unattended in simple panel data models.81

Both of the shortcomings of a Ricardian model are duly addressed with the stochastic82

production function model approach employed by Chen et al. (2004). Using a county-level83

panel data for 24 years, they reveal evidences of the negative effect of change in mean and84

intra-annual variances of the U.S. climate on the mean as well as variability of crop yield in85

a crop specific manner. Estimating a similar stochastic production function, McCarl et al.86

(2008) investigate the yield of five major crops in the US with a richer specification that also87

includes variance in climatic variables and interactional terms of temperature with regional88

dummies as independent variables while Cabas et al. (2010) examine the effects of climatic89

as well as non-climatic factors on crop yield in a Canadian province.90
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None of the previous studies investigate the impact of climate on yield variability in91

India. Although two recent studies on Indian agriculture use panel data models, these do not92

allow variance of output to be affected (Auffhammer et al. (2006); Sanghi and Mendelsohn93

(2008)). Specifically, this paper aims to answer the following open questions based on the94

methodologies applied. First, how does the change in temperature and rainfall affect seasonal95

mean yield and its variability across the state? Based on previous literatures, we hypothesize96

that an increase in the average temperature and total precipitation should increase inter-97

annual yield variability. Second, how does an increase in the intra-seasonal variability in98

temperature and precipitation affect the seasonal mean yield and its variability? Various99

global climate models have predicted an increase in the variability in temperature and rainfall100

with time and it is likely to have an adverse effect on mean yield and an escalating effect on101

the yield variability. Lastly, how does the effect of change in climatic factors on crop yield102

vary across different quantiles of yield distribution? We hypothesize that the lower levels of103

yield are likely to be more sensitive to any change in climatic factors.104

In order to examine the last hypothesis above, this study additionally employs quantile105

regression method to analyze the effect of the change in mean and variance of climatic factors106

on crop yield across the quantiles of yield distribution. Introduced by Koenker and Bassett107

(1978), this method is particularly important in models having a non-normally distributed108

dependent variable. Furthermore, quantile regression is more useful in our case because109

it can correct for heteroskedasticity in the error terms of crop yield as well as remove the110

impact of outliers. We expect that lower yield levels are more sensitive to any change in111

climatic factors and the results of quantile regression should be helpful in answering the112

third question above. In summary, two methodologies are applied in this study to address113

the above three research questions: Three stage Feasible Generalized Least Squares (FGLS)114

using a stochastic production function approach and then quantile regression to further115

explore the effect of climate on crop yield.116

Andhra Pradesh, a state at the Southeast coast of India, is selected as a study area117

5



for this analysis. Rice is the main crop in the state, which produces about 13% of total118

national rice output. Agriculture in Andhra Pradesh has been found to be highly vulnerable119

to climate change (Malone and A. L. Brenkert (2008); O’Brien et al. (2004)). Recently, this120

region is being characterized by a high frequency of droughts and severe cases of farmer’s121

suicide, which makes this study more important for policy makers (Tada (2004)). The data122

set used consists of seasonal rice yield and monthly average temperature and precipitation,123

which could be found from various sources as mentioned in Section 3.124

Although the empirical model used in this study is developed on the basis of models125

analyzed by McCarl et al. (2008) and Chen et al. (2004)), significant modifications have been126

made to test our hypotheses. While McCarl et al. (2008) use annual precipitation to capture127

the effect of rainfall on winter wheat and other crops, this study uses total precipitation128

in the corresponding crop growing season to capture the effect of changes in rainfall and129

so our model includes the sum of the monthly precipitation over Kharif and Rabi months.130

Also, standard deviation in monthly precipitation over the months in the growing season is131

included to capture the effect of variance in rainfall on the mean and variance of rice yield132

in the way similar to Cabas et al. (2010). Furthermore, we use agro-climatic zones instead133

of regional dummies to take care of local soil conditions as well as weather specific effects.134

To the best of our knowledge, this paper introduces several novel features in the analysis135

and is the first systematic attempt to study the effect of climate on yield variability in136

Indian agriculture. Furthermore, none of the previous studies have focuses on the effect of137

climate on rice yield by considering the average and variance of season-wise climate variables138

as well as the corresponding yields with the stochastic production approach. Finally, the139

application of quantile regression is a novel approach to gain further insight on the effect140

of climate over yield distributions. Especially, it is one of the most effecitve approaches to141

clarify the potential downside risk of agricultural production.142

Three important results are found using the above approaches. First, in most of the cases,143

an increase in average temperature, rainfall and their respective intra-seasonal variance are144
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likely to increase inter-annual variability in crop yield. This finding provides further basis145

to the concerns of increasing fluctuation in agricultural output with time under the effect of146

climate change. In addition, an increase in temperature and intra-seasonal variance is found147

to be adversely affecting the mean crop yield. Second, results of quantile regression reveal148

a difference in the sensitivity of rice crop yield towards climatic factors as per quantiles149

of yield distribution suggesting an increasing downside risk. It is found that farms with150

lower yield levels are likely to suffer more with unfavorable changes in climatic variables.151

Finally, the estimated effects vary significantly across agro-climatic zones which advocates152

for a differentiated and customized approach in climate change adaptation policies.153

The analysis presented in this study has direct implications for policy makers. First, the154

effect of climate change on yield variability should be given due focus in policy design in order155

to make our food production systems more resilient to climate change. Second, policy makers156

need to consider the heterogeneity in the impact of climate change to tackle the issues related157

to food security and rural poverty eradication more efficiently. This confirms the existence158

about a location and crop dependent effect and it calls for more localized adaptation policy159

frameworks instead of common state level policies. Third, farms with yield lying on the lower160

side of yield distribution should be given special attention and facilities like microfinance and161

crop insurance since they are likely to incur more losses in productivity.162

This paper is organized as follows. In the next section, climate and agriculture condi-163

tions in Andhra Pradesh are discussed. Section 3 describes the data set and gives information164

about the sources and variables. Methodology and technical aspects of the model are dis-165

cussed in Section 4 which is followed by discussion on estimated parameters in Section 5.166

We conclude and summarize the findings in the final section.167
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2 Climate and rice production in Andhra Pradesh168

The coastal states in India are found to be the most vulnerable regions to climate change169

(Malone and A. L. Brenkert (2008)). Having the second longest coastline (Sanil Kumar et al.170

(2006)), Andhra Pradesh features into one of the top seven most vulnerable states in India171

(Malone and A. L. Brenkert (2008) and see figure 1). Moreover, the agriculture sector in172

the state has been found to be doubly exposed to the climate change and globalization and173

hence, is seen at a much higher risk than most of the other states in India (O’Brien et al.174

(2004)). In fact, a recent report by the World Bank (2008) corroborates this assessment175

based on their evaluation that the adverse effect of climate change may lead to a significant176

decline in farm income and particularly for small farms in Andhra Pradesh, it may go down177

by 20% under projected climate scenario.178

Rice contributes about 77% of the total food grain production in Andhra Pradesh which179

amounts to about 7% of total state GDP (The Directorate of Economics and Statistics180

(2003)). Famous as the ‘Rice Bowl of India,’ Andhra Pradesh produces 12.24% of total181

rice output in India with 8.57% of the total rice cultivated area (Ministry of Agriculture,182

Government of India (2002)). About 70% of the households in the state are dependent on183

income from rice farming and it is the major staple food for about 70 million people. Since184

more than 54% of the area under total food grains is used for rice farming, rice is a very185

important factor in the state’s agriculture and economy too. Furthermore, Andhra Pradesh186

has been a pioneer in introducing modern rice varieties and a major part of its increase in187

rice output has come from yield enhancement since the late 1960s. Also, irrigation facilities188

in the state have seen a continuous development and about 95% of rice fields have been189

covered under irrigation so far (The Directorate of Economics and Statistics (2003)).190

Two main rice growing seasons in the country are Kharif and Rabi. Details of the191

sowing and harvesting months according to the cropping season are given in Table 2 (The192

Directorate of Rice Development, Government of India (2002)). The average rice yield in193

Andhra Pradesh is about 2000 Kg/ha. Kharif rice production is about 55% of total rice194
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output, whereas yield has been consistently higher for Rabi rice in the last 40 years (See195

Figure 3 and Figure 4). Depending upon soil and climate, Andhra Pradesh is divided in to196

nine agro-climatic zones. The details of the geographical distribution of the zones and the197

districts coming under each zone are given in Figure 2 and Table 3.198

3 Data set and sources199

Data used in this study come from two sources. Season wise crop yield data are taken200

from Centre for Monitoring Indian Economy (CMIE) reports.4 CMIE is the leading and201

most authentic economic data provider in India. The yield data are compiled by CMIE from202

government reports. Data on climatic variables are downloaded from India Water Portal.203

The dataset available at the portal is developed using the publicly available Climate Research204

Unit (CRU) TS2.1 dataset, out of the Tyndall Centre for Climate Change Research, School205

of Environmental Sciences, University of East Anglia in Norwich, UK.5 A major strength of206

this study comes from the use of district level climate and season wise yield data across the207

Andhra Pradesh, which allows for the examination of both inter-temporal and inter-spatial208

variances in the data with district level characteristics and technology trend controlled.209

3.1 Climate data210

India Water Portal provides datasets for various indicators such as rainfall, temperature,211

humidity etc from 1901 to 2002, for any part of India. For this study, we consider district212

wise monthly average temperature and monthly total precipitation as the basic climate data213

and which is further used to calculate average temperature and total monthly precipitation214

over the corresponding months in Kharif and Rabi seasons. As shown in Table 2, June to215

November months are considered the Kharif season and December to April are considered216

4accessed from the Library, National Council of Applied Economics Research, New Delhi (September
2009).

5Further details can be obtained from http://indiawaterportal.org/metdata
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the Rabi season (The Directorate of Rice Development, Government of India (2002)).217

3.2 Rice yield data218

Rice yield data from 1969-70 to 2002-03 are obtained from CMIE database and are de-219

noted in Kilograms per hectare (Kg/ Ha). CMIE collates the statistics on Indian agriculture220

from a comprehensive range of sources including government reports. The yield time series221

data cover all 23 districts of Andhra Pradesh. From 1969 to 2003, there have been changes in222

the boundaries of 10 out of current 23 districts and two new districts have been formed since223

the 1971 census (Kumar and Somanathan (2009)). However, since we are considering yield224

data in this study, our results would not be affected by any changes in district boundaries225

over time.226

Rice yield data cover both Kharif and Rabi seasons. The yield for both cropping season227

is reported in one financial year starting from March and ending in April in the subsequent228

year. For simplicity, we denoted the yield in a given financial year under the second calendar229

year. For example, rice yield data in 1980-81 is counted as the yield for the year 1981. In230

addition, the climate variables i.e. average temperature and precipitation over a cropping231

season are aligned with the yield data accordingly.232

4 Methodology233

The study uses panel data across all 23 districts of Andhra Pradesh in investigating234

the impact of variability in climatic factors: temperature and rainfall on seasonal rice yield235

from 1969-70 to 2002-03. First, the feasible generalized least square (FGLS) with Just-Pope236

stochastic production function approach is employed to analyze the panel data. In exploring237

further the effect of variation in mean and variance of climatic variable across the quantiles238

of rice yield distribution, quantile regression is applied. In the following sections, details239

about the empirical model, data used and methods of analysis are provided.240

10



4.1 Panel data model specification241

We summarize our fixed effect panel data yield model as given in the equation (1) below:242

Y ield = f(Trend, Temperature, SDTemperature, Precipitation,

SDPrecipitation, Temp X ACZone, Ppt X ACzone)

(1)243

Here, Temperature denotes average temperature in a district over each cropping season,244

Precipitation represents total rainfall in a district over each cropping season, SD Temperature245

and SD Precipitation are standard deviation of corresponding climatic variables over the246

months. Temp X ACZone and Ppt X ACzone are the sets of interaction variables between247

agro-climatic zone dummies and climatic variables. A summary of the variables used in the248

model is presented in Table 5.249

To estimate the effects of climatic variables on mean yield and yield variability under250

heteroskedastic disturbances,6 the Just and Pope stochastic production function7 is applied251

as given in Equation (2) below.252

y = f(X, β) + µ
.
= f(X, β) + h(X,α)0.5ε (2)253

Here, y is the output or yield, X is a vector of explanatory variables, f(·) denotes the254

deterministic component (mean function) of yield and relates X to average yield with β255

representing the set of estimated coefficients, µ is the heteroskedastic disturbance term with256

a zero mean, h(·) is the stochastic component (variance function) of yield and relates X257

to the standard deviation of yield with α representing the corresponding set of estimated258

coefficients, and ε is a random error term with a mean of zero and variance of σ2. Thus,259

6There is no need of conducting a separate test to check the presence of heteroskedasticity because the
same will be reflected by the estimated F-value in the second stage Log yield variance regression. Cabas
et al. (2010) and McCarl et al. (2008) also do not perform any test to check heteroskedasticity.

7Taking care of heteroskedasticity is not the main strength of of stochastic production function approach
because it is equally possible with the robust estimation techniques. The main utility of this method is in
exploring the effect of independent variables on the variance of dependent variable.
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this specification shows mean yield and yield variance as two separate components being260

explained by change in input variables i.e. temperature, rainfall and other derived variables261

(Just and Pope (1978); Chen et al. (2004)).262

Although yield and climatic data used here covers 23 districts in Andhra Pradesh over263

a time period of 33 years, unobservable effects of omitted variables may lead to a biased264

estimate of relationship between dependent and explanatory variables. For instance, rice265

farming in a given district may depend on some or all of the following factors: local soil266

condition, labor and fertilizer availability, infrastructure and access to major markets. Panel267

data estimation models provide a way to take care of such omitted variables. Two models268

are normally used to estimate panel data: Fixed Effect (FE) and Random Effect (RE).8269

This study will use FE model because of two main reasons. First, FE model allows270

estimating a district-specific effect. Second, there is a possibility of correlation between271

unobserved time-invariant characteristics and included covariates. For instance, districts272

with relatively more suitable climate may have developed better irrigation facility or more273

fertile soil over a period of time. Since RE model strictly requires the assumption of no274

correlation between unobserved time-invariant characteristics and independent variables, FE275

model can provide a better estimate. In other words, if the above assumption is violated,276

FE will give unbiased estimates while RE will not. Hence, Fixed Effect model is employed277

here. The choice of FE is also consistent with McCarl et al. (2008) and Cabas et al. (2010).278

In similar models, unit specific time varying unobserved effects are also likely to cause279

an omitted variable bias. All input variables other than climate such as fertilizer, pesticide,280

labor etc. may come in this category. However, following McCarl et al. (2008), Chen et al.281

(2004) and Weersink et al. (2010), we assume that there is no significant correlation between282

time varying input factors and climatic factors. Furthermore, included time trend vari-283

able is supposed to incorporate time-varying determinants to crop yield such as technology284

8Hausman specification test is not used here to determine which model to use since the choice of fixed
effect model to estimate the panel is well supported by previous studies and it also addresses concerns
pertaining to district specific effects.
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improvements.285

4.2 Panel data model estimation286

4.2.1 Panel unit root test287

The Just and Pope production function as specified above may incur issues related to288

spurious correlation between included variables (Chen et al. (2004)). These spurious correla-289

tions between variables are likely to be caused by deterministic and stochastic trends in the290

series (Granger and Newbold (1974)) and thus, correlations can be detected between vari-291

ables which are increasing for different reasons (McCarl et al. (2008)). As Chen et al. (2004)292

point it out; even including a deterministic time trend in the model may not completely solve293

the issue of spurious correlation. So, before proceeding with three stage FGLS procedure to294

estimate the panel parameters, it is necessary to test for the presence of unit root for each295

variable. The variables which are found to have an I(1) series must be differenced before296

panel estimation (McCarl et al. (2008)).297

Although traditional panel unit root tests work only with one time series at a time,298

recently developed methods for panel unit root testing allow the test for unit roots across299

all cross-sections using the panel structure as a whole. Previous studies with similar panel300

data set have used unit root tests proposed by Im et al. (2003) (IPS) and Levin et al.301

(2002) (LLC). As a pooled test, LLC is found to be useful with a panel of moderate size302

(10 < N < 250 and 25 < T < 250). IPS is an averaged t-test and is found to be more303

powerful. Given this, Maddala and Wu (1999) propose the use of Fisher test for testing304

unit roots in panel variables which is based on combining the p-values of the unit root test305

statistics in each cross-sectional unit more and they show that Fisher test achieves more306

accurate size and high power relative to the LLC test. However, the biggest strength of307

Fisher test comes from the fact that it does not require panel to be balanced (Barbierie308

(2009)). IPS and LLC both require panel structure to be balanced and for the same reason,309

and thus McCarl et al. (2008) delete all the observations with missing variables while applying310
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the IPS test. In the same way, this study employs Fisher test to carry out panel unit root311

testing in our analysis.9 This test combines the P -values of the unit root test statistics312

of N independent Augmented Dickey-Fuller regressions, where N represents the number of313

districts.10
314

4.2.2 Estimation315

Three stage FGLS procedure is applied to estimate the parameters of equation (1). In316

the first stage, y is regressed on f(X, β) and we calculate the resulting least square residuals317

as µ̂ as µ̂=y − f(X, β), where µ̂ is a consistent estimate of µ, a heteroskedastic disturbance318

term with zero mean. The second stage regresses square of least square residual (µ̂) on its319

asymptotic expectation h(X,α) where h(·) is assumed to be in exponential form. Using320

the predicted error terms from the previous stage as inverse of weights, third stage produces321

FGLS estimates for the mean yield equation. It results in a consistent and asymptomatically322

efficient estimator of β under the usual conditions for stochastic production functions. The323

final stage results are corrected for the heteroskedastic disturbance term with this procedure324

(Just and Pope (1978); Cabas et al. (2010)). In all three stages, district dummies are included325

to take fixed effects into account.326

To summarize, the estimated set of parameters β and α provides information about the327

effect of climatic variables on mean and variability of rice crop yield respectively. In other328

words, α is estimated with Log yield variance regression in the second stage and it provides329

an estimate of effect of climatic factors on the yield variability. On the other hand, β is330

estimated with Yield mean regression in the third stage and it gives an estimate of effect of331

climatic factors on the mean yield.332

Since we have included interactional terms, the zone-wise effect of changes in temperature333

9Researchers have found different results for panel unit root test in similar type of studies. Chen et al.
(2004) find some variables to be non-stationary using IPS test and they difference these variables before
proceeding with the panel estimation procedure. McCarl et al. (2008) do not find unit roots in any of their
variables. Cabas et al. (2010) do not carry out any unit root test on their panel.

10See Barbierie (2009) for more details.
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and rainfall can be easily estimated. However, results obtained via the three stage FGLS334

cannot be used to examine how farmers in an extreme distribution of the rice yield residuals335

would be affected by changes in climatic variables. The next section describes an application336

of quantile regression to tackle this problem.337

4.3 Quantile regression338

Quantile regression provides a powerful and effective method to generate useful insight339

for policy makers by estimating the linear relationship between independent variables and340

the median or other specified quantiles of the dependent variable. First introduced by341

Koenker and Bassett (1978), in the estimated conditional quantile functions, quantiles of the342

conditional distribution of the dependent variable are expressed as a function of observed343

covariates.11 Thus, quantile regression provides a flexible way to explain how a given quantile344

ρ (0 < ρ < 1) of the rice yield changes as a result of changes in one or more climatic variables.345

In quantile regression, an estimated coefficient vector is not much sensitive to outlier346

observations on the dependent value because the function is a weighted sum of absolute347

deviation.12 Furthermore, when error term is non-normal, quantile regression estimators348

may be more efficient than least squares estimators (Buchinsky (1998)).13 Both of these349

issues are highly likely in the case of rice crop yield. For instance, high yield varieties and350

other favorable factors may lead to higher yield in certain areas in a given district and for351

similar reasons; a relatively lower level of rice yield is also possible at the same location. In352

such cases, generalizing the effect of change in climatic variables over the whole spectrum of353

crop yield may not be very helpful and resorting to an objective function that identifies a354

11Recently some related studies have used quantile regression. Evenson and Mwabu (2001) examine effect
of agriculture extension on crop yields in Kenya using quantile regression and compare the results with
OLS. In another study, Makowski et al. (2007) analyze the relation between different yield components using
quantile regression and find that the quantile regression gives more accurate parameter estimators than the
methods currently used by agronomists

12This is the main conceptual difference in estimation between quantile regression and OLS. Former is
based on least absolute distance deviation while later is based on least square distance deviation.

13Non-normality in error term does not cause any biasedness in OLS estimates, though it does affect the
efficiency.
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conditional quantile would be a better alternative.355

In this study, to empirically test our assumption of the non-normal distribution of rice356

yield, Shapiro-Wilk and Shapiro-Francia normality tests are employed. Quantile regression357

provides valuable new information by estimating the whole spectrum of coefficients on cli-358

matic variables corresponding to different rice yield levels. Here, the spectrum is divided359

into five divisions i.e. 10th, 25th, 50th, 75th and 90th quantiles for the analysis purpose.360

Y ield = f(Trend, Temperature, SDTemperature, Precipitation,

SDPrecipitation,ACzonedummies)

(3)361

Equation (3) above summarizes the model used for analysis using quantile regression method.362

Although district dummies and interactional variables are not included, the results still give363

a useful qualitative measure of the effect of climatic variables across the range of yield in364

various agro-climatic zones. The quantile regression function is given as:365

yi=Xiβθ + uθi with Quantθ(yi|Xi)=Xiβθ (4)366

where Quantθ(yi|Xi) represents the θth conditional quantile of rice yield y and X denotes the367

set of independent variables and subscript i = 1, 2, 3, . . . , N represents individual districts.368

Relevant climatic variables included in the model are: seasonal average monthly temperature,369

seasonal mean total monthly precipitation and their standard deviations. To capture the370

change in technology trend, year variable is also included. Finally, in order to control for371

fixed effects by agro-climatic zones, zone dummies are also included. The distribution of372

error term uθi is left unspecified in quantile regression models (Koenker and Bassett (1978)).373

The most useful feature of quantile regression is that the estimated parameters differ374

over quantiles of yield distribution. For example, the magnitude of increase in average375

temperature may be relatively higher for lower levels of yield located in the 10th quantile.376

Similarly, the effect of change in temperature and rainfall is expected to be different for yield377
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in the 90th quantile than yield in the 10th quantile. In particular, this exercise explores how378

climatic variables affect the crop yield on the median as well as extreme quantiles of the379

yield distribution.380

The quantile regression method requires a special treatment for heteroskedasticity. Boot-381

strapping methodology is the most frequent application in the literature to obtain robust382

standard errors. This method allows drawing samples of size n with replacement from the383

actual observed data set. In this study, number of resamples is set at 400. The bootstrap384

method helps in estimating the standard error as well as confidence interval for an individual385

quantile regression parameter and ensures robust estimates are obtained (Hao and Naiman386

(2007)).387

The quantile regression model includes zone specific time invariant characteristics using388

zone dummies instead of fixed effects of time invariant district specific factors. We intend389

to capture agro-climatic zone wise heterogeneity with this model assuming that within an390

agro-climatic zone, effect of omitted variables does not vary significantly. Further, the data391

set consists of only 23 or less observations per district and so, it may not be very useful in392

analyzing the effect of climatic factors across the five quantiles of rice crop yield distribution393

in a true Fixed effect panel model. Finally, quantile regression model already takes care of394

unobserved heterogeneity and heterogeneous effects to a great extent. Hence, in place of395

district dummies, agro-climatic zone dummies are included in the quantile regression model.396

5 Results and discussions397

5.1 Panel unit root test results398

Results of the Fisher panel unit root test applied on the data on seasonal yield and399

climatic variables are presented in Table 6. The estimated test statistics clearly suggest400

that the null hypothesis of unit root can be rejected for all included variables at the 99%401

confidence interval. Moreover, seasonal yields as well as climatic variables show the same402
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results with or without trend.14 Since the panel unit root results clearly reject the null403

hypothesis of non-stationarity, there is no need to difference the data before the three-stage404

FGLS estimation.15
405

5.2 Panel estimation results406

Three stage FGLS procedure is applied to estimate the parameters of equation (2). Log407

yield variance regression, in the second stage, adjusts standard errors appropriately tak-408

ing first stage yield variation into account. F -value is less than 0.1 in Log yield variance409

regression for Kharif as well as Rabi, which suggests existence of heteroskedasticity (See410

Prob > F -values of Log yield variance regression in table 7). The final stage FGLS esti-411

mates parameters for Yield mean regression using the square root of variance predictions412

from the second stage as inverse of weights. Variance equation takes a non-linear (logarith-413

mic) form and assures positive predicted variances, whereas Yield mean regression is linear414

in all dependent and independent variables. The final estimates of the stochastic function415

parameters with Kharif and Rabi rice yield as dependent variable are shown in Table 7.416

Table 7 shows the estimated value of coefficients for Log yield variance (second stage)417

and Yield mean (third stage) regressions. Log yield variance takes Log of variance of the418

residuals from the first stage as dependent variable and corresponding part of the table419

provides information about effect of climatic factors on the yield variability. Here, the420

interpretation of positive coefficient will imply that a higher yield variance is expected with421

an increase in the corresponding explanatory variable, keeping all other factors constant.422

Furthermore, joint significance test result (F-test) for Kharif as well as Rabi, given at the423

bottom of the Table 7 shows that effect of all the climatic variables on the yield variance is424

not null and it validates our assumption about heteroskedasticity in the model.425

14Adding a time trend usually improves the test statistic in favor of alternate hypothesis in this case
(Wooldridge (2001)). Here, the results are positive even without including the time trend. However, specified
model includes time trend to take technology effect into account.

15These findings are in consistent with (McCarl et al. (2008)). However, earlier study by Chen et al. (2004)
did find unit root in the panel and so, followed the differencing procedure before estimation.
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The outcome in the mean regressions of Table 7 suggests that mean yield significantly426

varies with both mean and variance of temperature and rainfall variables. In particular,427

irrespective of season, any increase in mean temperature is likely to cause a reduction in428

mean yield. The effect of increase in precipitation is advantageous for Kharif rice. Overall,429

the effects of change in the mean of climatic variables are apparently more significant in the430

Kharif season than in the Rabi season. Yield variability is likely to increase with an increase431

in the variance of climatic variables, though some of the coefficients are not significant.432

A detailed discussion on Log yield variance and Yield mean regression for each season is433

presented below.434

Furthermore, the coefficient on variable Temperature denotes the effect of temperature435

on the base agro-climatic zone i.e. agro-climatic zone 1 in our case.16 The coefficients436

on the terms Temp X ACZone ‘n′ show the difference between estimate for the effect of437

Temperature for agro-climatic zone ‘n,′ where n = 2, 3, . . . , 8 with respect the base zone i.e.438

agro-climatic zone 1.17 Finally note again that the joint significance test results (F -test),439

given at the bottom, reflect that the model is able to explain the variation in the mean rice440

yield adequately.441

5.2.1 Kharif rice yield442

First, we focus on explaining the results of Kharif rice yield shown in Table 7. Most443

of the estimated parameters in the Yield mean regression show a significant effect on the444

yield. As expected, an increase in the average temperature in Kharif months is associated445

with a decrease in the rice yield whereas yield is likely to increase with an increase in the446

total rainfall for most of the agro-climatic zones. The Log yield variance regression suggests447

an increase in yield variability with increase in mean as well as intra-seasonal variance of448

16To analyze zone wise effect from the coefficient of interaction terms, agro-climatic zone 1 is taken as the
base zone.

17Additional statistical tools to compute point estimate and standard errors for a linear combination of
coefficients can be employed here. However, we follow the way McCarl et al. (2008) estimated and interpreted
the coefficients.
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climatic variables.449

Technology trend is showing a significant positive correlation with the Kharif rice yield.450

The dataset used in the analysis covers the post-green revolution period in India and it is451

expected that technology consistently improves the yield. The effect of change in average452

temperature over Kharif months is showing a negative and significant effect on the yield.453

The adverse effect of increase in average temperature on the mean yield is the highest454

for agro-climatic zone 1 and it remains negative and significant for all other zones except455

agro-climatic zone 3. The high and significant inverse effect of average temperature rise456

on rice yield is in line with the previous studies on tropical regions in India and other457

countries (Seo et al. (2005); Cline (2007)). The effect of change in total precipitation is458

mostly positive for all agro-climatic zones except Godavari (zone 2) and Krishna (zone 3).459

These two zones are coastal regions and are likely to receive high rainfall. The results460

suggest that an increase in precipitation in these regions may not have any positive effect on461

yield. All other zones observe a positive impact of any increase in rainfall with the Central462

Telangana zone garnering the highest estimated coefficient.463

The variability in average monthly temperature and total monthly rainfall, as denoted464

by SD Temperature and SD precipitation in Table 7, is found to be negatively correlated465

with the mean rice yield. Since climate variability is predicted to increase in the future,466

this finding is important for the region. This finding is also consistent with Mendelsohn467

et al. (2007) who reported the negative impact of an increase in intra-seasonal variance in468

temperature and rainfall on the farm value, which acts as a proxy for the productivity of469

farms.470

Although the estimated coefficients for Agro-climatic zones 2, 3, 4 and 7 suggest that471

increase in mean temperature may decrease the yield variability, the effect of change in the472

mean climatic variables, i.e., temperature and precipitation on yield variability is positive473

in general for most of the zones (Log yield variance regression results, Table 7). Further,474

the positive signs on SD Temperature and SD Precipitation suggest that yield variability is475
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likely to rise with an increase in intra-seasonal variance in temperature and rainfall.476

All together, any increase in average temperature tends to decrease the mean yield of477

rice in Andhra Pradesh, whereas an increase in total precipitation is likely to increase the478

mean yield. Overall, rice yield in Andhra Pradesh is likely to suffer from any increase in479

the average temperature and a decrease in the total precipitation. Results suggest that480

increasing intra-seasonal variance in temperature and rainfall may lower down the mean481

yield while increasing the variability in the rice yield. Kharif rice yield variability is also482

likely to increase with increase in total precipitation for most of the zones, whereas effect of483

temperature on yield variability is zone specific.484

5.2.2 Rabi rice yield485

Next, we focus on presenting the regression results of Rabi rice yield again shown in486

Table 7. As per the coefficient on year variable, technology trend shows a significant and487

positive effect on Rabi rice yield. It should be noted that the estimate of trend for Rabi488

rice is about 10% higher than the same for Kharif rice and it may partially explain why the489

average Rabi rice yield is higher than the average Kharif rice yield (Figure 4). The estimated490

coefficients for Rabi rice yield suggest a negative impact of increase in average temperature491

and intra-seasonal variance in average monthly temperature and total monthly precipitation492

over the Rabi months. However, the effect of precipitation over mean yield is ambiguous and493

varies across agro-climatic zones. Results from the Log yield variance regression suggest an494

increase in yield variability with increase in average temperature and intra-seasonal variance495

in both climatic variables. Many of the estimated coefficients are not found to be significant,496

so interpretation presented here is more of qualitative in nature.497

Estimated coefficient for Temperature in Yield mean regression is consistently negative498

for most of the agro-climatic zones suggesting an inverse effect of an increase in average tem-499

perature on the mean Rabi rice yield (Yield mean regression, Table 7). Only for Godavari500

and Krishna agro-climatic zones (zones 2 and 3), the estimated parameter is positive and501
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it seems that local soil and other conditions may lead to an increase in yield with a rise in502

average temperature. Results suggest that the zone specific effect of an increase in precipi-503

tation would likely increase mean yield for four out of eight agro-climatic zones. These four504

zones namely- Krishna, Southern, Northern Telangana and Central Telangana are likely to505

get benefitted from any increase in rainfall in Rabi season. The coefficient on SD Tempera-506

ture and SD Precipitation are negative and significant18 and so, in a way similar to Kharif507

rice, mean Rabi rice yield is likely to decline with an increase in intra-seasonal variance in508

climatic variables.509

Log yield variance regression results (Table 7, left side) suggest that the yield variability510

is likely to increase with increase in intra-seasonal variance in temperature and precipitation.511

The effect of changes in average temperature on yield variability is generally positive; whereas512

increase in total precipitation is seem to be reducing the yield variability for most of the agro-513

climatic zones. Particularly, for agro-climatic zones 2, 3 and 4, these effects are significant514

and negative. Since Rabi rice is mostly dependent on irrigation and so it is possible that a515

year with a good amount of rainfall in Rabi months may observe less uncertainty in the rice516

yield.517

The overall effect of increase in temperature is negative on the mean Rabi rice yield,518

whereas the effect of increase in precipitation is dependent on specific agro-climatic zones.519

Increase in intra-seasonal variance in climatic variable is likely to decrease the mean yield520

while increasing the yield variability. The effect of increase in average temperature on yield521

variability is positive in general, while an increase in total precipitation is associated with a522

decrease in yield variability for about 50% of agro-climatic zones.523

5.2.3 Yield across Kharif and Rabi cropping season524

The most consistent finding is the negative impact of increase in intra-seasonal variance525

in climatic variables on the mean rice yield irrespective of cropping season. From the Log526

18P-value for the estimated coefficient of SD Precipitation is close to 10%.
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yield variance regression results (Table 7), it is evident that the effect of increase in intra-527

seasonal variance in temperature and rainfall is likely to increase the yield variability in both528

seasons. Furthermore, an increase in average temperature and total precipitation is expected529

to increase the inter-annual yield variability for rice in most of the agro-climatic zones.530

Both cropping seasons are likely to witness a decrease in mean rice yield with an increase531

in average temperature and a decrease in total precipitation for most of the agro-climatic532

zones. Yield variability is found to be increasing with time for the Kharif as well as the Rabi533

season. However, the estimated coefficient for the technology trend for Rabi rice is more than534

Kharif rice’s, which may be showing the increasing irrigation facilities19 and development of535

winter season compatible yield varieties over time. The positive sign on the coefficient for536

trend is consistent with previous studies (Chen et al. (2004); McCarl et al. (2008); Cabas537

et al. (2010)).538

5.3 Quantile regression results539

This section further explores the effect of climatic variables on Kharif and Rabi rice yield540

across the quantiles of rice crop yield distribution. A graphical presentation of the quantile541

of Kharif and Rabi rice yield is shown in Figure 5. These quantile plots facilitate a quick542

comparison of ordered values of a seasonal yield data with quantiles of the normal distribution543

(shown as a straight line). A significant level of deviation from the normal distribution is544

clearly evident here. Furthermore, Shapiro-Wilk and Shapiro-Francia20 normality tests are545

conducted for both dependent variables, i.e., Kharif and Rabi rice yield. Table 8 shows that546

the null hypothesis of normality can be rejected for both yield variables at 99% confidence547

level. The estimates by quantile regression are more efficient than the least square regression548

when error terms are non-normal (Buchinsky (1998)) and the above results formally justify549

19Irrigation is likely to be more important for Rabi rice than the Kharif rice since the latter receive
adequate rainfall with the Southwest summer monsoons.

20Shapiro-Wilk and Shapiro-Francia are two numerical methods to test normality in data. The Shapiro-
Wilk test gives the ratio of the best estimator of the variance to the usual corrected sum of squares estimator
of the variance. The value of ratio varies from 0 to 1, where 1 denotes a perfect normality. Shapiro-Francia
is a modified form of Shapiro-Wilk (Park (2008)).
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the use of this method. In order to take care of heteroskedasticity which is an already known550

issue in this study, bootstrapping is used to estimate robust standard errors.551

The parameters for quantile regression are estimated for five levels of quantiles: 0.10, 0.25,552

0.50, 0.75 and 0.90 and the results are presented in Table 9 and Table 10 for Kharif and Rabi553

rice yields respectively. Here, column q50 i.e. results for the 50th quantile corresponds to554

regression through the median. The interpretation of the estimated coefficients is conditional555

to the specific quantile and so would remain valid within the quantile. The estimates indicate556

the likely effect of an increase in one unit of the corresponding independent variable on the557

yield variable within the quantile in consideration. Moreover, for the variables specified558

in the form of interaction terms in the model, interpretation should remain confined to559

the corresponding zones. For instance, in agro-climatic zone 1, holding all other factors560

constant, an increase of 1 cm in rainfall is associated with an increase of 0.893 Kg/hectare561

in the Kharif rice yield at 10% quantile level (Table 9). Since the estimated coefficients562

provide extensive detail about the impact of climatic variable across the quantiles of yield563

distribution for each agro-climatic zone, the following discussion is intended to capture the564

most interesting points. However, using an approximation method to visualize the zone wise565

effect of climatic variables, similar to the one applied by Conley and Galenson (1994), the566

findings are presented qualitatively.567

5.3.1 Kharif rice yield568

The estimated coefficients for Temperature show interesting results across different quan-569

tiles and agro-climatic zones (Table 9). For base zone i.e. agro-climatic zone 1, the effect of570

average temperature on Kharif rice yield is consistently negative and significant. Moreover,571

the degree of inverse impact is significantly higher for the lowest quantile (q10) than the572

same for the higher quantile (q90) of rice yield. The results clearly suggest that farms at573

the lower tail of yield distribution are likely to witness greater loss in Kharif rice yield with574

an increase in average temperature in agro-climatic zone 1. The estimates support similar575
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effect for rice yield in agro-climatic zone 2, 5, 7 and 8 too. For rest of the zones, estimated576

coefficients suggest either non-significant or a positive correlation between average tempera-577

ture and rice yield. However, in general, the coefficients on the lower quantiles consistently578

suggest a negative and higher impact of an increasing average temperature on the Kharif579

rice.580

The effect of change in Precipitation is found to vary significantly across various agro-581

climatic zones. Zones 1, 5, 6 and 7 consistently show a positive impact of an increase582

in total precipitation on the yield suggesting an increase in rainfall may be beneficial for583

Kharif yield, though estimated coefficients are not significant for all of the quantiles. Out584

of the remaining zones, agro-climatic zone 2 is likely to observe a decrease in rice yield with585

an increase in precipitation for all the quantiles. Higher absolute values of corresponding586

estimated coefficients for lower quantiles clearly imply that the farms with rice yield on the587

lower side of yield distribution are more sensitive to changes in seasonal precipitation.588

The estimated coefficients for intra-seasonal variance in climatic variables are not signif-589

icant for any of the quantiles. However, their signs imply that an increase in the variances590

in either monthly average temperature or total precipitation is likely to reduce the rice yield591

for lower quantiles. In other words, the farms with rice yield lower than the median are ex-592

pected to observe an adverse impact of increase in the intra-seasonal variability in climatic593

variables. Overall, the farms at the lower side of the Kharif rice yield distribution are likely594

to suffer more with any increase in average temperature, a decrease in total precipitation,595

or an increase in the intra-seasonal variability in climatic variables.596

5.3.2 Rabi rice yield597

The effect of change in climate variables on Rabi rice yield differs across the agro-climatic598

zones and in some cases, it even varies significantly within a zone across the rice yield599

quantiles (Table 10). The estimated coefficients for average temperature suggest a negative600

impact of any increase in the average temperature on the rice yield for almost all the zones601
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except zone 1 and 2. Although the estimated parameters are positive for these two zones,602

the values are not significant. In a way similar to the Kharif rice case, the results reflect a603

high degree of the inverse effect on the yield for lower quantiles.604

Although some of the zones are found to be benefitting from an increase in precipitation in605

terms of Rabi rice yield, in most of the cases the estimates are negative across the quantiles.606

Estimated coefficients for Agro-climatic zones 1, 2, 6, 7 and 8 are consistently negative across607

the quantiles and some of the values are significant at the 1% level. Agro-climatic zones 3, 4608

and 5 are showing the positive impact of an increase in total precipitation on the Rabi rice609

yield for lower quantiles, but the effect becomes negative as we proceed towards the higher610

quantiles of yield distribution.611

The intra-seasonal variation in climatic variables tends to influence rice yield in the612

expected manner. Most of the estimated coefficients are negative which suggests that an613

increase in the variance in monthly average temperature or monthly total precipitation is614

likely to decrease the Rabi rice yield. Furthermore, the higher absolute values of the esti-615

mated coefficients for lower quantiles imply a more severe inverse effect on the farms with616

rice yield on the lower side of the yield distribution.617

In summary, an increase in average temperature, total precipitation and their respective618

intra-seasonal variances is likely to decrease the yield in Rabi season. Although the degree619

of effect on crop yield varies across the zones, in general, these effects are found to be more620

intense for lower levels of yield.621

5.3.3 Yield across Kharif and Rabi season622

Overall, both cropping seasons are likely to suffer from an increase in the average tem-623

perature. It is evident that the lower quantiles of rice yield are more sensitive towards any624

change in average temperature irrespective of the cropping season. Effect of change in pre-625

cipitation on rice yield varies across the zones, quantiles and cropping seasons. While a626

Kharif crop is likely to get benefitted for most of the agro-climatic zones, a Rabi crop may627
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witness a significant loss in yield with an increase in precipitation. Intra-seasonal variance628

in climatic variables exhibits a negative correlation with the yield and again, sensitivity is629

more on the lower side of yield distribution for both of the cropping seasons.630

Why lower unit yields are more sensitive to climate? Lower yield levels may be more631

sensitive because of poor farm management practices such as irrigation, soil fertility main-632

tenance etc. It also includes not having proper adaptation strategies in place and so such633

farms are likely to suffer more with any adverse change in climate.634

5.3.4 Zone wise graphical analysis of yield sensitivity to climate635

Tables 9 and 10 reflect a significant level of variation in the magnitude as well as the sign636

of the estimated coefficient across eight agro-climatic zones, which make it difficult to filter637

the local and yield level specific effects. Furthermore, understanding the location specific638

characteristics of the effect of climate on crop yield is very important for designing effective639

adaptation policies (Mall et al. (2006)). Hence, an effort to show the individual effect of640

change in temperature and precipitation on seasonal rice yield is made here.641

The graphs shown in Figure 6 to Figure 9, plot predicted values of rice yield for Kharif642

and Rabi against corresponding seasonal average temperature and total precipitation. The643

coefficients estimated with quantile regression are used to predict the yield level. All the644

independent variables except the one shown on the X- axis are kept at their mean levels.645

These plots are similar to the return to education vs. experience plots by Buchinsky (1994)646

and predicted wealth vs. age plots by Conley and Galenson (1994).647

ŷk = f(trend, temperature, βi,mean of other independent variables) (5)648

where βi represents the parameters estimated in equation (4).649

Figures 6-9 provide a qualitative understanding of the inter-relationship between climatic650

factors and rice yield by plotting the function summarized above (equation (5)). For example,651
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Figure 6: Graphical display of agro-climatic zone wise relationship between Kharif rice yield652

and Temperature provides a quick observation that the lower quantiles are more sensitive653

to change in the average temperatures than the upper quantiles, especially in agro-climatic654

zone 1, 3 and 5. These plots are not much helpful in extracting any quantitative information.655

For Kharif rice yield, the effects of temperature across all the zones are not uniform656

(Figure 6). For agro-climatic zones 1 and 5, these are clearly negative, whereas the sensi-657

tivities to temperature are relatively low in zones 2, 4, 6 and 8. Interestingly, agro-climatic658

zones 3 and 7 reveal that quantile wise predicted yield may diverge or converge with in-659

creasing temperature and it shows a clear case of heteroskedasticity. As evident from Figure660

7, Kharif rice yield increases with an increase in total precipitation for agro-climatic zones661

1, 5, 6 and 7. The plots for zones 2 and 3 reveal a decreasing trend in yield with a rise662

in total precipitation. Agro-climatic zones 1, 4 and 5 show the heteroskedastic behavior of663

yield against changes in precipitation. In all of the plots, the slope of the lines representing664

the upper quantile is flatter suggesting a higher sensitivity towards average temperature and665

total precipitation in lower quantiles.666

Similarly, plots of predicted values of Rabi rice against average temperature show a667

diminishing trend in the yield with increasing temperature (Figure 8). Agro-climatic zones668

2, 3, 6 and 7 observe a higher degree of inter-quantile variation in estimates, which calls for a669

cautious interpretation of the results. A lack of sufficient number of observations may be one670

possible reason. However, further research is required to study these patterns. In line with671

our discussion in the previous section, Rabi rice yield show a decreasing trend with total672

precipitation for all agro-climatic zones except zone 3, 4 and 5 (Figure 9). Heteroskedastic673

behavior of yield is clearly evident from both figures.674

The quantile regression analysis presented above confirms the major findings of the675

stochastic production function approach as discussed in previous section. It further pro-676

vides detailed insight about the inter-relation between yield and climatic variables across677

the quantiles of seasonal rice yield distribution. Two main points are revealed by the quan-678
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tile regression model. First, the degree of effect of climatic variables on yield clearly differs679

according to agro-climatic zones. Second, even in the same agro-climatic zone, the sensitivity680

to change in temperature and rainfall varies across the quantiles of rice yield distribution681

and farms with yield on the lower side of yield distribution are likely to incur more loss682

in the productivity with unfavorable changes in temperature. Thus, this analysis provides683

evidences in favor of heterogeneity and intensified downside risk due to changes in climate684

factors.685

6 Conclusion686

The objective of this work is to study the effect of climate on the rice crop yield in687

Andhra Pradesh, India. Three main research questions addressed here are: First, how does688

the change in temperature and rainfall affect seasonal rice yield across the agro-climatic689

zones in the state? Second, how does an increase in intra-seasonal variability in temperature690

and precipitation affect the seasonal rice yield? Lastly, how do these effects vary across the691

quantiles of yield distribution? Two methodologies are employed here: (i) Three stage FGLS692

using a stochastic production function approach and (ii) quantile regression.693

There are strong evidences that an increase in the average temperature will inversely694

affect the crop yield irrespective of the cropping season. A rise in precipitation is found695

to be advantageous for most of the districts in the Kharif season. Both of these findings696

are in line with our expectations and previous studies for a tropical region (Cline (2007);697

Mendelsohn et al. (2007); Seo and Mendelsohn (2008)). However, for Rabi rice crop, the698

effect of change in precipitation varies across the agro-climatic zones. The yield variability,699

in general, is likely to increase with a rise in the average temperature and total precipitation.700

The change in inter-annual variance in temperature and rainfall is found to have an inverse701

effect on the mean yield and a proportional effect on the yield variability. This finding702

provides further basis to the concerns of productivity loss with increasing fluctuations in703
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climate.704

The results reveal that the sensitivity or rice crop yield to change in temperature and705

rainfall varies across the quantiles of yield distribution even in the same agro-climatic zones.706

It is clearly evident that farms with lower yield levels are likely to observe greater loss in707

their crop productivity, which further implies that rice farms are facing a downside risk708

because of changes in climatic factors. As mentioned before in the corresponding section,709

poor farm management practices may be responsible for such an effect. Finally, the findings710

confirm that a high degree of aggregation at the province or country level may overlook711

critical information required for adaptation at the local level. There are strong evidences712

showing various agro-climatic zones face different kinds of threats to the crop productivity713

suggesting heterogeneity in the effect of climate across agro-climatic zones. Thus, this study714

presses the case for a more location specific approach in further research in the climate and715

agriculture area.716

As a limitation, this study does not take long term adaptations like crop-switching into717

account, though it still reflect the farm level adaptation with changes made by farmers to718

maximize the crop yield. Second, the variation in yield cannot be related to production719

directly because changes in crop area are not included in the model. This study can be720

further extended to yield forecasting for various climate scenarios, which will be useful for721

an assessment of future risk and trend in crop yield.722

The analysis presented in this study is vital for policies related to food security, rural723

poverty and crop insurance. Under a combination of major projected climate scenarios,724

Southeast India is likely to observe a 3.05 degree Celsius increase in the average temperature725

and a 3.42 mm per day rise in the average precipitation by 2070-90 (Cline (2007)), which726

translates into a high degree of loss in crop productivity. The severity of the impact of727

climate varies across the zones and so will be the effect on the crop productivity. It renders728

common nation or state level adaptation policies irrelevant and ineffective. Hence, the policy729

makers need to take the heterogeneity in the impact of climate into account in order to plan730

30



and utilize available resources in the most effective way.731

Local and state level policies for ensuring food security and alleviating rural poverty732

should also integrate the risk of crop yield loss into their design. Proper irrigation facilities,733

microfinance and regionally-relevant research and development projects may play an impor-734

tant role in mitigating the adverse impact of climate variability and hence, these must be735

prioritized for the most vulnerable districts in order to make the food production systems736

resilient to climate change. High downside risk which comes from an increase in the variabil-737

ity of crop yield distribution suggests a thorough risk analysis. Particularly, because of the738

increasing pace of climate change (IPCC (2007)), the findings of this study are very relevant739

to the risk modelers in crop insurance companies as well as government regulators. Finally, in740

order to ensure optimal utilization of land resources in the light of expected changes in mean741

and variance of crop productivity with changes in climatic factors, land planning should be742

integrated with climate change adaptation policy framework.743
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Table 2: Cropping seasons in Andhra Pradesh

Table 3: Agro-Climatic Zones in Andhra Pradesh, India
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Table 4: Descriptive statistics

Table 5: Summary of variables used in the empirical model
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Table 6: Panel unit root test results using Fisher test

Table 7: Panel data analysis for rice yield in Andhra Pradesh, India (1969-2002)
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Table 8: P-values of normality test

Figure 1: Map of India showing Andhra Pradesh (not to scale). Source:
http://www.indiandhra.com/ (accessed on April 2, 2010)
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Figure 2: Map of Andhra Pradesh showing agro-climatic zones

Figure 3: Production of Kharif and Rabi Rice in Andhra Pradesh
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Figure 4: Yield of Kharif and Rabi Rice in Andhra Pradesh

Figure 5: Quantile of Kharif and Rabi rice yield
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