
Economics & Management Series EMS-2012-15

Planning under Correlated and Truncated Price and
Demand Uncertainties

Wenkai Li
International University of Japan

I. A. Karimi
National University of Singapore

R. Srinivasan
National University of Singapore

September 2012

IUJ Research Institute
International University of Japan

These working papers are preliminary research documents published by the IUJ research institute. To facilitate prompt distribution, they have
not been formally reviewed and edited. They are circulated in order to stimulate discussion and critical comment and may be revised. The views
and interpretations expressed in these papers are those of the author(s). It is expected that the working papers will be published in some other
form.



 1 

Planning under Correlated and Truncated Price and Demand Uncertainties 

 

Wenkai Li
a,b

, I. A. Karimi
*,b

, R. Srinivasan
b
 

a
Graduate School of International Management, International University of Japan, Niigata 

949-7277, Japan 
b
Department of chemical and Biomolecular Engineering, National University of Singapore, 4 

Engineering Drive 4, Singapore 117576 

 

 

ABSTRACT 

This paper presents a novel approach to handle refinery planning under correlated and truncated random demand 

and price uncertainties. To compute the expectation of plant revenue, which is the main difficulty for a planning 

problem under uncertainty, a bivariate normal distribution is used to describe demand and price. Formulae for 

revenue calculation under correlated and truncated price and demand are derived. It is found that the correlation 

and truncation of price and demand have major influences on plant net profit. A plan that ignores these factors 

can be far from optimal. The Type 2 service level or fill rate undercorrelated and truncated random price and 

demand is derived and efficiently calculated in this paper. Maximum plant net profit that satisfies certain fill rate 

target can thus be obtained. The proposed approach can be generally applied for modeling other chemical plants 

under uncertainty. 
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1. Introduction and motivation 

Due to the changing market conditions, fluctuating environment and many other unobservable factors, many 

parameters in an industry are uncertain. These uncertain parameters, such as fluctuating demands and volatile 

raw material/product prices, are challenging and motivating decision makers to seek efficient managerial tools 

and models to cope with the difficulty and achieve their KPIs. This ubiquitous phenomenon is thoroughly 

exhibited in one of the most important industry in the national economy: the refining industry. The prices and 
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demands of crude oil, gasoline and diesel oil are highly uncertain in reality arising from uncertain global and 

national economic situations and indeterminate factors such as outbreaks of war, strikes and diseases, etc. 

 

Uncertainty can be categorized into different types according to different criteria. From the time horizon point of 

view, uncertainty can be categorized as short-term, mid-term and long-term uncertainty. Short-term uncertainty 

includes day-to-day or week-to-week processing variations, canceled/rushed orders, equipment failure, etc. 

Mid-term uncertainty addresses horizons of one to two years and incorporates some features from short-term 

and long-term uncertainties
1
. Long-term uncertainty refers to raw material/final product unit price fluctuations, 

demand variations, and production rate changes occurring over longer time frames ranging from five to ten 

years. 

From the process operation point of view, there are two types of uncertainties
2
: external uncertainties and 

internal uncertainties. External uncertainties originate from outside but have impacts on the process. They can 

be the feed rate and/or feed composition and recycle flows as well as flows of utilities, the temperature and 

pressure of the coupled operating units or market conditions. Internal uncertainties come from the unavailability 

of knowledge of the process. For a determined model structure, they are uncertain model parameters that are 

often regressed from a limited number of experimental data. They can be the kinetic parameters of reactions in a 

unit such as FCC (fluidized-bed catalytic cracker) or the transfer rate of a unit such as a CDU (crude distillation 

unit). 

From the observability point of view, uncertain parameters can be categorized into two types
3
: unknown 

parameters and variable parameters. The exact values of unknown parameters are never known even though the 

expected values may be known. These parameters include model parameters determined from experimental 

studies such as the kinetic parameter of a reaction as well as unmeasured and unobservable disturbances such as 
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the influence of wind and sunshine. Variable parameters are not known at the design stage, but can be specified 

or measured accurately at later operating stages. These include feed flow rates, product demands and process 

conditions. 

 

1.1. Correlation and truncation between uncertain demand and price 

Among all the uncertainties discussed above, demand uncertainty has the dominant impact on plant profit and 

customer satisfaction
4,5

. Until now, most research work
4,6

 on uncertainty assumes that the demand and price are 

independent and the price is assumed to be a constant because of the difficulty in computing the bivariate 

integral originated from the correlated demand and price. Such methods are only as good as their underlying 

assumptions. Furthermore, underlying the research of most previous papers
4,6

, the ranges of demand and price 

are assumed to be (– to +). This assumption may also bring significant inaccuracies in revenue calculation. 

In this section, we show to what extent the real world demand and price are corrected and truncated. 

 

1.1.1. Dependency between demand and price 

Some researchers
7
 have studied the factors that influence the inter-correlation between demand and price. In 

general, the main relationship between crude oil demand and price can be summarized in Figure 1. Many factors, 

such as war, strikes, etc., influence the demand for crude oil. There are also many factors, such as the inventory 

level, OPEC behavior, etc., influence the crude oil price. Crude oil demand has major influences on the price of 

crude oil. However, this influence is weaker reversely. In both the long-run and short-run, the demand for crude 

oil internationally is highly insensitive to changes in price
8
. By regressing real world demand and price data 

from EIA (the U.S. Energy Information Administration)
9
, the correlation coefficient between gasoline (New 

York Harbor Gasoline Regular) price and its demand is 0.44 for the year 2003 to 2004. For world crude oil in 

2003 and 2004, the correlation coefficient is 0.30 (see Appendix I for regressing details). These data show that 
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the demand and price are far from independent. Some researchers
4
 have considered the correlation among 

different products. However, no research work considers the correlation between demand and price so far. 

Considering the correlation between the price and demand and studying its influences on plant revenue are the 

main concern to be addressed in this paper. 

 

 

 

 

 

 

 

Figure 1 Dependency between crude oil demand and price 

 

1.1.2. Truncation of demand and price 

Truncation can happen when a portion of data range is not attainable on physical grounds
10

. An apparent 

example is that the demand or price can only take positive values. In fact, despite their random nature, most real 

world variables take values in a relatively narrow range. Table 1 lists some parameters estimated from the real 

world demand and price data (EIA
9
). In the second row, the mean,  and the standard deviation, , of the crude 

oil demand in 2003–2004 are 49.2 and 1.3 million barrels/day, respectively. The maximum and minimum 

demands in this period are 51.9 (=+2.1) and 47.2 (=–1.6) million barrels/day, respectively. Thus, we 

obtain the range inside which crude oil demand locates in these two years: (). From the last 

column of Table 1, it can be seen that, real world crude oil demand and price fluctuate one to two standard 

deviations around their means. 
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Year  / Max/Min 
Range:(-A*,+B*) 

(A, B) 

2003-2004 

Total OECD crude oil demand
*
 

Million barrels/day 
49.2/1.3 51.9/47.2 (1.6, 2.1) 

Crude Oil Price
**

 33.1/6.2 47.2/23.4 (1.6, 2.3) 

1970-1999 

World Total Oil Demand 

Million barrels/day 
65.3/8.6 82.6/46.8 (2.2, 2.0) 

Crude Oil Price
***

 29.0/15.0 60.4/8.8 (1.3, 2.1) 

*: Total OECD includes OECD Europe, Canada, Japan, South Korea, United States, and Other. 

**: Brent, US$/barrel; ***: Venezuelan Tia Juana Light, US$/barrel (in 1999 real dollar) 

Table 1 Ranges of the real world crude oil demand and price 

 

Figure 2 shows the normally distributed truncated and non-truncated density functions. The difference between 

the truncated and non-truncated density functions is obvious. Thus, using a non-truncated density function to 

approximate a real world truncated density function may bring significant inaccuracies in revenue calculation 

and a planning strategy based on this may far from optimal. 
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Figure 2 Normally distributed (=14.5) non-truncated and truncated (truncation range: –, + ) density 

functions 

 

Thomopoulos
11

 recognized that the impossibility of negative demands effectively truncates normally distributed 

demand patterns. He used left-truncated normal distributions to determine safety stocks and shows how the 

truncated normal distribution can be used to more accurately estimate the safety stock. Bookbinder and 

Lordahl
12

 also used the left-truncated normal distribution to simulate the stochastic nature of demand patterns to 

set the re-order point. Johnson A. et al.
13

 used univariate left-truncated normal distribution to improve the 

achieved service level. They realized the significant computational errors in applications led by the 
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non-truncated normal distribution assumption. Johnson A. et al.
14

 extended the univariate left truncated normal 

distribution to BLTN (bivariate left truncated normal distribution) and derived formula to approximate the 

cumulative distribution function of BLTN. They then implemented the derived formula into EXCEL. However, 

there exists an error in their extension which will be discussed later. 

 

1.2. Solution approaches 

Stochastic programming deals with problems in which some parameters incorporated into the objective or 

constraints are uncertain. These uncertain parameters are usually described by probability distributions or by 

possible scenarios in stochastic programming. Stochastic programming mainly consists of recourse models
15

 and 

chance constrained programming
4,6

, distinguished by the methods of describing uncertain parameters and the 

algorithms of solving the model. 

 

1.2.1. Recourse model and chance constrained programming 

Recourse models use corrective actions (usually penalty functions) to compensate for the violation of constraints 

arising during the realization of uncertainty. The two-stage model is one of the main paradigms of recourse 

models. Two-stage model divides the decision variables into two stages. The first-stage variables are those that 

have to be decided right now before future realization of uncertain parameters. Then, the second-stage variables 

are those used as corrective measures or as recourse against any infeasibilities arising during the realization of 

the uncertainty. 

Because the exact values of the penalty terms are difficult to determine since they include intangible 

components such as loss of goodwill, the costs of off-specification products or outsourcing of production 

requirements in recourse models, in many cases of process operations, this penalty term is not available. This 
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difficulty is overcome in chance constrained programming. Chance constrained programming (or the 

probabilistic approach) seeks to satisfy the constraints involved by a predetermined confidence level using the 

known probability density/cumulative distribution of random variables
16

. That is, rather than requiring 

constraints containing the uncertain parameters always to be satisfied or imposing penalties for infeasibilities, a 

probability of constraint satisfaction (usually called the confidence level) can be specified by the decision maker. 

This approach provides comprehensive information on economic achievements as a function of the desired 

confidence level. 

Zimmermann
17

 argued that the choice of the appropriate method is context-dependent, with no single theory 

being sufficient to model all kinds of uncertainty. A general-purpose algorithm is unlikely to solve all problems 

efficiently or exactly. It might be a good strategy that one applies different approaches for different problems. 

For design problems which penalty terms are easy to be obtained, using two-stage method is appropriate. For 

problems that penalty terms are difficult to estimate, chance constrained programming is suitable. If the 

computation speed is the main concern, fuzzy programming maybe a good choice. In this work, we extend the 

approach presented in Li et al.
6
 for refinery planning under uncertainty to consider correlated and truncated 

demand and price uncertainty. A bivariate normal distribution is used to describe demand and price. The double 

integral for revenue calculation is reduced to several single integrals after detailed derivation. The unintegrable 

standard normal cumulative distribution function in the single integrals is approximated by polynomial function. 

 

1.2.2. Revenue calculation methods 

The computation of the revenue of a plant involves uncertain variables such as market demand and product price. 

How to compute the expectations of uncertain functions introduced by these uncertain variables generates the 

main difficulty in stochastic rogramming
18

 and approaches in the literature differ primarily in how these 

expectations are computed
19

. Several approaches have been used in the literature to compute these expectations. 
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Clay et al.
15

 applied the certainty equivalent transformation (CET) to yield a deterministic equivalent problem. 

Ierapetritou et al.
20

 used the Gaussian quadrature formula to approximate the expected revenue. Liu et al.
21

 used 

Monte Carlo sampling to estimate the expectation of the objective function. Li et al.
6
 categorized different 

revenue calculation approaches into three types which include: A) Minimizing cost. The objective is to 

minimize the total costs and the computation of plant revenue is avoided. B). Maximizing profit I. The revenue 

is calculated by the product of the market price and the amount of the product produced by the plant. In this 

approach, it is assumed that a product can always be absorbed by the market. C). Maximizing profit II. The 

revenue is calculated by the product of the market price and the market demand. In this approach, it is assumed 

that the amount of a product is always greater than the market demand. However, the assumptions in B) and C) 

are not always true in the real world. As pointed out by Petkov et al.
4
 and Li et al

6
, in many cases, if the market 

demand is less than the product amount, only part of the product can be sold; otherwise if the market demand is 

higher than the product amount, then only part of the demand can be satisfied. The revenue should then be 

calculated by: 

Revenue [ min( , )]
c x

E c P x                                           (1) 

where c is the price, P is the production rate of the product and x is the random demand. This representation 

implies that Revenue is not normally distributed even though x is normal. In previous works
4,6

, c is assumed to 

be a constant and replaced by its expected value, c . 

 

1.3 Applications of modeling with uncertainty 

Since Dantzig’s seminal work on uncertainty appeared
22

, research on uncertainty has been attracting the 

attention of numerous researchers. Problems that include uncertainty mainly focus on plant design, plant 

planning/scheduling and supply chain management. 

Researchers commonly studied the design of chemical process using two-stage (operating and design stage) 
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approach. The investment decisions (equipment sizes) are determined at the design stage and the effect of 

uncertainty is considered in the second stage. Wellons and Reklaitis
23

 investigated the design of multiproduct 

batch plants under uncertainty. They suggested a distinction between “hard” and “soft” constraints and 

introduced penalty terms for the latter type. Analytical expressions of the expected profit objective were 

developed in their paper. Rooney and Biegler
3
 studied the optimal process design that incorporated two types of 

uncertain parameters, unknown parameters and variable parameters. An extended two-stage method was 

proposed in their paper. Yi et al.
24

 proposed PSW (periodic square wave) model which can provide useful data 

for investment decision making in a highly uncertain business environment. Uncertainty on demand, cycle time 

and product quality were considered. The model was used to design a batch-storage network. 

 

Planning is essential for plants after optimal design was made. It addresses applications such as feedstock 

selection and disposition, as well as overall material balance and conversion optimization
15

. Clay et al.
15

 studied 

production planning using linear two-stage approach. Uncertain parameters were presented by finite discrete 

probility distribution functions. Petkov et al.
 4
 studied the planning of multiproduct batch plants under demand 

uncertainty. They converted normally distributed demand into a chance constraint programming problem. The 

expectation of revenue was computed for correlated product demands. Lee et al.
25

 proposed a general strategy 

for treating an open-shop batch process planning. Discrete demand pattern was used and a hybridization of the 

Monte Carlo simulation and simulated annealing techniques was applied in the flexible planning algorithm. 

They also concluded that the open-shop mode is preferred in a batch process when the inventory cost is large. 

Refineries are vital components of national economies. However, the study on refinery planning under 

uncertainty is still far from mature up to now. Clay et al.
15

 used refinery planning in their case studies to 

illustrate their solution algorithm. Neiro et al.
26

 performed supply chain optimization of refineries with the 
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consideration of uncertainty using a scenario-based approach. Li et al.
6
 studied refinery planning under 

uncertainty using chance constraint programming. They used approximated standard loss function to calculate 

the plant revenue. They also implemented Type 2 service level (fill rate) target into the planning model. For 

linear planning problem, the model can be solved efficiently. 

 

In the past few years, scheduling under uncertainty is attracting the attention of more and more researchers. 

Balasubramanian et al.
27

 studied the problem of multi-period batch plant scheduling under demand uncertainty. 

Scenario tree was used to describe all possible solutions of the scheduling model. They proposed a 

shrinking-horizon approach to approximate the multistage stochastic MILP model. By solving a series of 

two-stage models and implementing the decisions period by period, the computational difficulties associated 

with large-scale multistage model was overcome. Janak et al.
28

 proposed a robust optimization methodology 

based on a min-max framework. Uncertainty was considered in the coefficients of the objective function and the 

right-hand-side parameters of inequality constraints. Several known distributions were used to describe 

uncertain data. Bonfill et al.
29

 studied scheduling under uncertain processing times. A two-stage stochastic 

approach was applied whose objective was to minimize a weighted sum of the expected makespan and the 

expected wait times. 

 

The study of the supply chain under uncertainty is important with the ever-changing market conditions. Gupta et 

al.
1
 studied supply chain planning using two-stage programming. Inventories were considered in the model and 

hard-to-specify penalty terms were used for stockout or too low inventory levels. Applequist et al.
30

 introduced a 

new metric for evaluating supply chain design and planning risk under uncertainty. A rational balance between 

the return and risk can thus be obtained. Chen and Lee
31

 developed a multi-objective scheduling model for a 
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multi-echelon supply chain network with uncertain demands and product prices. Scenarios with known 

probabilities were used to describe random demand. Conflicting objectives, such as fair profit distribution 

among all participants, safe inventory levels and maximum customer service levels, were taken into account. 

Guillen et al.
32

 proposed a two-level framework to address the design of chemical supply chains under 

uncertainty. The structure of the supply chain network was decided in the strategic level and sent to the lower 

operational and tactical level to compute the expectation of profit under uncertainty. The profit from the lower 

level was sent back and evaluated in the strategic level to decide whether any changes of the supply chain 

structure is needed. The product price was assumed to be known a priori in their work. Alternatively, Mele et 

al.
33

 applied agent-based approach for supply chain retrofitting under uncertainty. The demand was modeled as a 

set of events distributed over time horizon. Uncertain processing and transport times were incorporated via 

normal probability functions. 

 

2. Revenue for correlated price and demand 

Assuming independent demand and the price can cause significant discrepancies in revenue calculation due to 

correlated price and demand for a real world plant. In this section, the formulae for plant revenue computation 

considering the correlation between price and demand are derived. Instead of a constant, the price, c, is assumed 

to conform a two-dimensional normal distribution together with the demand, x. The corresponding pdf 

(probability density function) is represented by: 

2

2 2

2 2

2

( ) 2 ( )( ) ( )1 [ ]
2(1 )1

( , )
2 1

c xc x

c x

c c c c x x

c x e

  
   


  

     





          (2) 

where, c  is the mean of price, σc is the standard deviation of price.  is the mean of demand and σx is the 

standard deviation of demand.  is the correlation coefficient. The normally distributed price and demand are 

independent if =0. Normal distribution is widely used in scientific and statistical computing because it captures 
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the essential features of variables in broad areas such as petroleum industry
10

. Furthermore, from the Central 

Limit Theorem, normal distribution can be used as an approximation to some other distributions and provides 

the foundation for other statistical procedures because the distribution of non-normal average tends to be normal. 

Therefore, we focus on normally distributed demand and price in this paper. 

Assuming both the demand and price take values in the range (–, +) and combining eqs (1) and (2), the 

revenue is ( , )

P

c x

xc c x dxdc



 

   if x  P and ( , )

c x P

Pc c x dxdc

 

 

   if x > P.  

Then, eq (1) becomes 

Revenue ( , ) ( , )

              A + B  C

P

c x c x P

xc c x dxdc Pc c x dxdc 

  

   

 

 

                       (3) 

where, A ( , )

P

c x

xc c x dxdc



 

   , B= ( , )

c x

Pc c x dxdc

 

 

  , C ( , )

P

c x

Pc c x dxdc



 

   . 

Since ( , )

x

c x dx





  is the marginal denisty function of c (referred to as h(c)), then  

B ( )

c

P ch c dc Pc





                                                 (4) 

We first expand the simpler term C: 

C ( , ) { ( , ) }

P P

c x c x

Pc c x dxdc P c c x dx dc 

 

   

                          (5) 

where 

2

2 2

2 2

2

( ) 2 ( )( ) ( )1 [ ]
2(1 )1

( , )
2 1

P P

c xc x

x x c x

c c c c x x

c x dx e dx

  
   


   

     





           (5.1) 

let 
c

c c
m




 , 

x

x
n






 , then cdc dm , xdx dn ; when x=P, 

x

P
n






 . Then eq (5.1) becomes, 
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2 2

2

1
[ 2 ]

2(1 )

2
( , )

2 1

x

P

P m mn n
x

x n c x

c x dx e dn









  




 



 




                      (5.2) 

Since 

2 22 2 2 2 2 2 2 2 2 2 2

2 2 2 2

1 1 1 ( )
[ 2 ] [ 2 ] [( ) (1 )]

2(1 ) 2(1 ) 2(1 ) 2(1 ) 2

n m mm mn n m mn n m m n m m

e e e e e


     

   

    
         

      , 

eq (5.2) becomes, 

2
2

2

( )
2

2(1 )

2
( , )

2 1

x

P
m

n mP

x nc

e
c x dx e dn






 



 



 




                                (5.3) 

Let 
21

n m
t









, then 21dn dt  ; when 

x

P
n






 , 

2
=U

1

x

P
m

t














. Eq (5.3) becomes, 

2 2

2U
2 2

2( , ) (U)
2 2

m m
P t

c cx

e e
c x dx e dt

 

 

 

                                 (5.4) 

In the above equation, (.) is the standard normal cumulative function: 

2

2
1

( )
2

x t

x e dt






    

Combining eqs (5.4) and (5), we have 

2 2

2 2

C (U) ( ) (U) C1 C2
2 2

m m

c

cc m

e e
P c dc P m c dm

 

  

 

                (6) 

where 

2

2

C1= (U)
2

m

m

e
Pc dm







  and 

2

2

C2= (U)
2

m

c

m

e
P m dm







 . 

Since (.) is unintegrable in eq (6), we have to use a simpler function to approximate (.). 

 

Now we expand A: 

2 2

2 2 2

1 ( ) 2 ( )( ) ( )
[ ]

2(1 )

2
A

2 1

c xc x

c c c c x xP

c x c x

xc
e dxdc

  

   

  

      


 




             (7) 

let 
c

c c
m




 , 

x

x
n






 , then 
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2 2

2

22

2

1
[ 2 ]

2(1 )

2

( )

2(1 )2

2

1
A ( )( )

2 1

( )
    ( )

2 1

x

x

P

m mn n

x c

m n

P

n mm

c
x

m n

n m c e dndm

m c
e n e dn dm














  
 


 

 



  


 



 




 

  


 
 


  
 
 
 

 

 

           (7.1) 

let 
21

n m
t









, then 

2 2

2

2

2

2

( ) U

2 22(1 ) 2

U U
2

2 22

U

2 22

( ) 1 [( 1 ) ]

    (1 ) 1 2 ( )
2

    (1 ) 1 2 ( ) (U)

x

P

n m t

x x

n

t
t

x x

x x

n e dn t m e dt

e
te dt m dt

e m





      

      


      



  



 




 



     

    

      

 

              (7.2) 

 

U

A1

2 2m2
x c 2 2

m

1
me e dm

2

  




 



 
   A4 (U)

2m

c x 2

m

c
me dm

2

   









   

U

A2

2 2m2
x 2 2

m

1 c
e e dm

2

 




 



 
   A5 (U)

2m

2

m

c
e dm

2










   

A3 (U)

2m

2x c 2

m

m e dm
2

 








   

 

U L

TA1 [ ]

U

2 2 2c

L

c

c c

m2
x c 2 2 2

LU c c

1
me e e dm

2 F





  





  



 
   

TA4 [ (U) (L)]

U

2c

L

c

c c

m

c x 2

LU c c

c
me dm

2 F





   










    

U L

TA2 [ ]

U

2 2 2c

L

c

c c

m2
x 2 2 2

LU c c

1 c
e e e dm

2 F





 





  



 
   

TA5 [ (U) (L)]

U

2c

L

c

c c

m

2

LU c c

c
e dm

2 F















    

TA3 [ (U) (L)]

U

2c

L

c

c c

m

2x c 2

LU c c

m e dm
2 F





 









    

 

Table 2. Single integrals for A and AT 
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Combining eqs (7.1) and (7.2), A becomes 

2 2U

2 22 2

2

( )
A (1 ) 1 2 ( ) (U)

2 1

m

c
x x

m

m c
e e m dm


      

 


 



 


       
   

             (7.3) 

From eq (7.3), it is straightforward to reduce A into five single integrals, A1 to A5, as follows: 

A A1+A2+A3+A4+A5                                               (8) 

Where, A1 to A5 are listed in Table 2. 

 

Combining eqs (3), (4), (6) and (8), we obtain the equation to calculate the revenue when the price and demand 

are correlated: 

 

Revenue = A1 + A2 + A3 + A4 + A5 + B – C1 – C2                         (9) 

 

3. Revenue for correlated and truncated price and demand 

Besides the independence assumption, in the derivation of the works in the literature
4,6

, the integration ranges of 

price and demand are assumed to be (–, +), which is not the case in the real world. This may bring further 

discrepancy in revenue computation. To handle this, the formulae for truncated price and demand are derived in 

this paper and the influence of degree of truncation on revenue computation is studied using case studies. Now 

suppose that the range of demand is [xL, xU], where –∞ < xL < xU < +∞ and the range of price is [cL, cU], where 

–∞ < cL < cU < +∞. Then the pdf (probability density function) of BBTN (Bivariate Bi-Truncated Normal 

distribution) is: 

( , )
,       

( , )

0,              otherwise  

L U L U

LUBBTN

c x
x x x and c c c

Ff c x


   

 



                         (10) 
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where, ( , )c x  is the pdf of the two-dimensional non-truncated normal distribution function defined by eq (2) 

and ( , )
U U

L L

c x

LU

c x

F c x dxdc   .  

We point out that some researchers
14

 used incorrect pdf for bivariate left truncated normal distribution as 

follows 

( , )
,       

1 ( , )( , )

0,                      otherwise  

L L

L LBLTN

c x
x x and c c

F x cf c x


 

 



 

In fact, the term 1 ( , ) 1 ( , )
L Lc x

L LF x c c x dxdc
 

      does not equal to ( , )

L Lc x

c x dxdc
 

  . 

Combining eqs (1) and (10), the plant revenue is 

T TRevenue  A  + C                                                    (11) 

where, TA ( , )

U

L L

c P

BBTN

c c x x

xcf c x dxdc

 

   ; TC ( , )

U U

L

c x

BBTN

c c x P

Pcf c x dxdc

 

   . 

Here, the value of P should locate in [xL, xU]. 

Now we expand AT: 

2 2

2 2 2

1 ( ) 2 ( )( ) ( )
[ ]

2(1 )
T

2

1
A

2 1

U

c xc x

L L

c c c c x xc P

LU c c x x c x

xc
e dxdc

F

  

   

  

    
 



 




          (12) 

substitute c and x with m and n respectively, eq (12) becomes 

22

2

( )

2(1 )2
T

2

( )
A ( )

2 1

U

c x

LL

xc

c c P

n mm

c
x

xLUc c nm

m c
e n e dn dm

F



 








 

 

 

 




 

 
 

   
 
 
 

                (12.1) 

substitute n with t and define
2

L
1

L

x

x
m














: 
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2 2

2

2 2

( ) U

2 22(1 ) 2

L

U L

2 22 2

( ) 1 [( 1 ) ]

(1 ) ( ) 1 2 ( )( (U) (L))

x

L

x

P

n m t

x x

x
n

x x

n e dn t m e dt

e e m











      

      



  






 

     

        

 
                    (12.2) 

Combing eqs (12.1) and (12.2), AT becomes 

2 2 2U L

2 22 2 2
T

2

( )
A (1 ) ( ) 1 2 ( )( (U) (L))

2 1

U

c

L

c

c c

m

c
x x

LUc c

m c
e e e m dm

F






      

 




 



 


         
   

  (12.3) 

From eq (12.3), it is straightforward to reduce AT into five single integrals, A1T to A5T, as follows: 

T T T T T TA A1  + A2  + A3  + A4  + A5                                      (13) 

Where A1T to A5T are listed in Table 2. 

Now we expand CT: 

TC ( , ) { ( , ) }

U U U U

L L

c x c x

BBTN
LUc c x P c c x P

P
Pcf c x dxdc c c x dx dc

F


   

                       (14) 

substitute c and x with m and n respectively 

2
2

2

( )
2

2(1 )

2
( , )

2 1

U

U x

x

x
m

n mx

Px P c
n

e
c x dx e dn












 



 









                                (14.1) 

substitute n with t and define U
2

U
1

U

x

x
m














: 

2

2

U( , ) ( (U ) (U))
2

U

m
x

cx P

e
c x dx







                                       (14.2) 

Combining eqs (14) and (14.2), we have 

T T TC C1 C2                                                        (15) 

where 

2

2
T UC1 = [ (U ) (U)]

2

U

c

L

c

c c

m

LU c c
m

Pc
e dm

F














  , 

2

2
T UC2 = [ (U ) (U)]

2

U

c

L

c

c c

m

c

LU c c
m

P
me dm

F
















  . 
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Combining eqs (11), (13) and (15), we obtain the equation to calculate the revenue when the price and demand 

are correlated and truncated: 

Revenue = A1T+ A2T + A3T + A4T + A5T + C1T + C2T                        (16) 

 

4. Revenue calculation using approximated method 

4.1. Approximation of the standard normal cumulative function 

We still cannot calculate the single integrals listed in Tables 2 and 3 directly because the standard normal 

cumulative function, (.), is unintegrable. To overcome this difficulty, we should use some simpler functions to 

approximate (.). There exist some accurate approximations to the standard normal cumulative function in the 

literature
34

. However, those approximations, complicated by exponential functions, are still unintegrable or too 

complicated to integrate. In this paper, simple polynomial functions are used to approximate (.): 

3 5
0 1 3 5( ) ... n

nx a a x a x a x a x       ,      n=1,2,3....                    (17) 

Table 3 lists the regressed coefficients a0~an when seventh-order and ninth-order polynomial functions are used 

(n =7 and 9 in eq (17)) and the regression ranges of x are [–3, 3] and [–5, 5], respectively. Note that, the 

regression range of x is selected based on the range of U, L and U
U
 (see Appendix II for details). The last 

column is the sum of error square of the regression. The accuracy of the approximation will be shown in case 

studies. 

 

order 
Range 

of x 
a0 a1 a3 a5 a7 a9 

Sum of error 

square 

7th 
[-3, 3] 0.5 0.3942473009 -0.0581252700 0.0056884266 -2.28133E-04 NA 6.99847E-05 

[-5, 5] 0.5 0.3587807973 -0.0348111040 0.0017667944 -3.18160E-05 NA 0.0134016761 

9th 
[-3, 3] 0.5 0.3979964902 -0.064081932 0.0082040258 -6.17138E-04 1.9877E-05 2.05180E-06 

[-5, 5] 0.5 0.3814916121 -0.047908688 0.0037750801 -1.44598E-04 2.0933E-06 0.0019402717 

Table 3 Coefficients of polynomial approximation functions for (.) 
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4.2. Revenue calculation using approximated (.) 

With (.) approximated by eq (17), we can further derive the formulae for the single integrals. Here we show 

formulae for seventh-order polynomial approximation. It is straightforward to extend to ninth-order polynomial 

approximation. 

 

4.2.1 Revenue for correlated price and demand 

We first define: 

21
W









, 

21
U

x

P
Z



 





 

Applying eq (17): 

2

3 5 7
0 1 3 5 7

(U) ( ) ( )
1

        ( ) ( ) ( ) ( )

x
U

U U U U

P
m

Wm Z

a a Wm Z a Wm Z a Wm Z a Wm Z











     


        

       (18) 

expand eq (18): 

(U) F+G+H+I+J+K+L+M                                             (19) 

where, 7 7
7F a W m , 6 6

7G 7 Ua W Z m , 5 5 2 5
5 7H ( 21 )Ua W a W Z m  , 4 4 3 4

5 7I (5 35 )U Ua W Z a W Z m  , 

3 3 2 3 4 3
3 5 7J ( 10 35 )U Ua W a W Z a W Z m   , 2 2 3 2 5 2

3 5 7K (3 10 21 )U U Ua W Z a W Z a W Z m   , 

2 4 6
1 3 5 7L ( 3 5 7 )U U Ua W a WZ a WZ a WZ m    , 3 5 7

0 1 3 5 7M U U U Ua a Z a Z a Z a Z     . 

With eq (19), the single integrals for A are now integrable and listed in Table 4. In Table 4, coefficients F to M 

are defined in eq (19); E1, E3, M0 to M8 are derived in Appendix III. 

 

 

 



 20 

1A1 E
2

x c1

2

  



 
  

3A2 E
2

x1 c

2

 



 
  

A3 (G I K M )x c
8 6 4 2M M M M

2

 


     

A4 (F H J L )c x
8 6 4 2

c
M M M M

2

   




     

A5 (G I K M )6 4 2 0

c
M M M M

2




     

C1 (G I K M )6 4 2 0

Pc
M M M M

2
     

C2 (F H J L )c
8 6 4 2

P
M M M M

2




     

' '
T 1 2A1 (E E )

2
x c

LU

1

2 F

  



 
   

' '
T 3 4A2 (E E )

2
x

LU

1 c

2 F

 



 
   

' ' ' ' ' ' '
T T T T T T T TA3 (G H I J +K L M )x c

8 7 6 5 4 3 2
LU

M M M M M M M
2 F

 


       

' ' ' ' ' ' '
T T T T T T T TA4 (G H I J +K L M )c x

7 6 5 4 3 2 1
LU

c
M M M M M M M

2 F

   




       

' ' ' ' ' ' '
T T T T T T T TA5 (G H I J +K L M )6 5 4 3 2 1 0

LU

c
M M M M M M M

2 F




       

' ' ' ' ' ' ' ' ' ' ' ' ' '
T T T T T T T TC1 (G H I J +K L M )6 5 4 3 2 1 0

LU

Pc
M M M M M M M

2 F
       

' ' ' ' ' ' ' ' ' ' ' ' ' '
T T T T T T T TC2 (G H I J +K L M )c

7 6 5 4 3 2 1
LU

P
M M M M M M M

2 F




       

Table 4. The single integrals for eqs (9) and (16) 

 

4.2.2 Revenue for correlated and truncated price and demand 

We first define: 

21

L
L

x

x
Z



 





, 

21

U
UU

x

x
Z



 





 

then 



 21 

2
( ) ( ) ( )

1

L

x
L

x
m

L Wm Z











     


; U
2

(U ) ( ) ( )
1

U

x
UU

x
m

Wm Z











     


 

Expanding (U) and (L) , we obtain: 

T T T T T T T(U) (L) ( ) ( ) G +H +I +J +K +L +MU LWm Z Wm Z              (20) 

where 6 6
T 7G 7 ( )U La W Z Z m  , 5 2 2 5

T 7H 21 ( )U La W Z Z m  , 4 4 3 3 4
T 5 7I [5 ( ) 35 ( )]U L U La W Z Z a W Z Z m    , 

3 2 2 3 4 4 3
T 5 7J [10 ( ) 35 ( )]U L U La W Z Z a W Z Z m    ,

2 2 3 3 2 5 5 2
T 3 5 7K [3 ( ) 10 ( ) 21 ( )]U L U L U La W Z Z a W Z Z a W Z Z m      , 

2 2 4 4 6 6
T 3 5 7L [3 ( ) 5 ( ) 7 ( )]U L U L U La W Z Z a W Z Z a W Z Z m      ,

3 3 5 5 7 7
T 1 3 5 7M ( ) ( ) ( ) ( )U L U L U L U La Z Z a Z Z a Z Z a Z Z        . 

Expanding (U) and U(U ) , we obtain: 

' ' ' ' ' ' '
U T T T T T T T(U ) (U) ( ) ( ) G +H +I +J +K +L +MUU UWm Z Wm Z           (21) 

where 

' 6 6
T 7G 7 ( )UU Ua W Z Z m  , ' 5 2 2 5

T 7H 21 ( )UU Ua W Z Z m  , ' 4 4 3 3 4
T 5 7I [5 ( ) 35 ( )]UU U UU Ua W Z Z a W Z Z m    , 

' 3 2 2 3 4 4 3
T 5 7J [10 ( ) 35 ( )]UU U UU Ua W Z Z a W Z Z m    ,

' 2 2 3 3 2 5 5 2
T 3 5 7K [3 ( ) 10 ( ) 21 ( )]UU U UU U UU Ua W Z Z a W Z Z a W Z Z m      , 

' 2 2 4 4 6 6
T 3 5 7L [3 ( ) 5 ( ) 7 ( )]UU U UU U UU Ua W Z Z a W Z Z a W Z Z m      ,

' 3 3 5 5 7 7
T 1 3 5 7M ( ) ( ) ( ) ( )UU U UU U UU U UU Ua Z Z a Z Z a Z Z a Z Z        . 

With eqs (20) and (21), the single integrals for AT are now integrable and listed in Table 4. In Table 4, '
1E to '

4E , 

'
0M to '

8M  are derived in Appendix IV. Some properties of the revenue are derived In Appendix V. 

 

5. Impact of customer service levels 

Customer service level is an important index that must be monitored and maintained
5
. Two types of service 

levels (or customer satisfaction levels) are commonly used in the industry. The Type 1 service level (usually 
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also called the confidence level) is the probability of not stocking out in all scenarios or horizons
35

. The Type 2 

service level (also often called the fill rate) is the proportion of demands that are met from a plant
35

. The Type 1 

service level is widely applied in chance constrained programming up to now. However, it is not how service is 

interpreted in most applications
35

. The Type 2 service level is a greater concern of most managers in industry
6,35

. 

The difference of Type 1 and 2 service level can be found in the literature
6,35

. 

 

5.1 Type 1 service level 

To apply Type 1 service level on uncertain customer demand x, the following constraint should be added in the 

model
2,6

: 

 Pr D x    

where α is the Type 1 service level or confidence level target, D is the production rate (no inventory) or the 

deliverable amount (with inventory). The above constraint is transformed to the following by applying chance 

constrained programming
2,6

: 

1( )D F                                                            (22) 

In the above constraint, 
1F 
is the reverse cumulative distribution function of the product demand. When 

demand conforms to non-truncated normal distribution, constraint (22) becomes: 

1( )xD                    (22a) 

When demand conforms to doubly truncated normal distribution, constraint (22) becomes: 

 Pr ( )

L

D

BTN

x

D x x dx              (22b) 

where ( )BTN x  is the bi-truncated density function of demand x: 
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( ) ( )

( ) .

[ ( ) ( )]

x x
BTN

U L BTN
x

x x

x x

x
x x

 
 

 


  


 

 

 
 

 

 

where [ ( ) ( )]BTN x XU XLZ Z     and U
XU

x

x
Z






 , L

XL

x

x
Z






 . 

let 
x

x
t






 and define XP

x

D
Z






 , then 

( )

L

D

BTN

x

x dx =

2

2
1

2

XP

XL

Z t

x

BTN Z

e dt


 



 = [ ( ) ( )]x

XP XL

BTN

Z Z



  =

( ) ( )

( ) ( )

XP XL

XU XL

Z Z

Z Z

 

 
 

Thus, (22b) becomes  

( ) ( )

( ) ( )

XP XL

XU XL

Z Z

Z Z


 


 
, or ( ) ( ) ( ( ) ( ))XP XL XU XLZ Z Z Z     , i.e., 

1( ( ) ( ( ) ( )))x XL XU XLD Z Z Z                (22c) 

 

5.2 Type 2 service level 

Type 2 service level is the one that most managers need
6,35

. However, it cannot be accurately approximated by a 

Type 1 service level
6
. To apply Type 2 service level on customer demand, the following constraint should be 

added in the model
6
: 

S



                                                               (23) 

where β is the Type 2 service level or fill rate target defined by the decision maker, S is the actual amount of 

product sold to customers. S/θrepresents the actual Type 2 service level. For non-truncated normally 

distributed demand, the standard loss function, LF(.), has been effectively applied and approximated to compute 

S in the literature
6
. In this paper, we extend the research to cases when demand is truncated. 

 

5.3. The actual Type 2 service level 

When demand x is doubly truncated, the actual amount of product sold to customers, SBTN, is the minimum value 

of the customer demand and the production rate: 
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min{ , } ( )

U

L

x

BTN BTN

x

S P x x dx                                            (24) 

Expand eq (24), we have 

( ) ( ) ( ) ( )

U U

L

x x

BTN BTN BTN BTN BTN

x P

S x x dx x P x dx LF P                       (25) 

where BTN and ( )BTNLF P  are the mean and the loss function of the bi-truncated normal demand, 

respectively. Loss function represents the amount of unmet demand (the backorder level) of a plant facing 

uncertain demand
36

. BTN and ( )BTNLF P  are derived in Appendix VI. From eqs (23) and (25), the actual 

Type 2 service level for bi-truncated normal demand is: 

( ) ( )
1BTN BTN BTN BTN

BTN BTN BTN

S LF P LF P

  


                                    (26) 

 

Eq (23) then becomes: 

( )
1BTN BTN

BTN BTN

S LF P


 
                                                 (27) 

 

6. The optimization model 

The optimization model implementing the revenue calculation and the Type 1 and 2 service levels is shown as 

follows: 

p

p

P

 

max  Revenue COSTS (eqs 9 or 16)

s.t.   Constraints for Revenue  (Tables 5 and 6)

       Constraints for Type 1 or 2 service levels (eqs 22 and 27)

       Constraints for COSTS

       Other operational

 

 constraints

 

where pRevenue  is revenue from product p. The model is to maximize the net profit of a plant. We use the 

formulae (eqs (9) or (16)) derived in this paper to calculate the actual revenue for each product. Tables 5 and 6 

are used to support eqs (9) or (16). The constraints for Type 1 or 2 service levels are eqs (22) and (27), 

respectively. COSTS includes the raw material cost, operating cost, inventory cost and investment cost, etc. 
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Other operational constraints, such as material balance and product quality, should also be included. Parameters 

such as W, LZ , UUZ , XUZ , XLZ , M0 to M8, 
'
0M to '

8M , LUF , BTN  etc. should be calculated before running 

the optimization model according to their definitions and the formulae derived in Appendixes III~VI. 

 

7. Case Study 

Two examples are used to illustrate the influences of correlation and truncation of price and demand on plant 

revenue. Example 1 is taken from the case 1 of Li et al.
6
. Figure 3

6
 shows the configuration of example 1. 

MTBE and GASO (gasoline) enter the gasoline blending (GB) unit to produce two products: 90# (GASO’90) 

and 93# (GASO’93) gasoline. The price of GASO and MTBE are 1400 and 3500 Yuan/tom, respectively. The 

price of 90# and 93# gasoline are 3215 and 3387 Yuan/ton, respectively. The means of the demand for 90# and 

93# gasoline are 50 and 70 tons, respectively. The octane number of GASO and MTBE are 70 and 101, 

respectively. The octane number of 90# and 93# gasoline are 90 and 93, respectively. The blending requirement 

is that the octane number of each product should equal or be greater than the required octane number of that 

product. No inventory is considered and the overproduced products are assumed to be valueless. All examples 

are formulated with GAMS
37

. The solver MINOS5 in GAMS 21.7 is used for NLP. 

 

 

 

 

 

 

10.1 Accuracy of different approximation functions 

GASO’90 

GASO’93 GASO 

 

MTBE 

G90 

G93 

M90 

M93 

Figure 3 The configuration of example 1 

Gasoline Blending Unit 
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In this case, the correlation coefficients between all products and their prices are set to zero and hence the 

normally distributed price and demand becomes independent. The results from eq (9) should then be the same as 

that obtained from the literature
6
. The standard deviation of 90# and 93# gasoline demands are both 10 tons. 

In Table 5.1, the result of the first row is taken from the case 1 of Li et al.
6
 Rows 2 to 4 are results from (.) 

approximation methods with three orders (5
th

, 7
th

, 9
th

). It can be seen that, all three approximation methods have 

rather high accuracy. The polynomial approximation with higher order has higher accuracy. For the sake of 

simplicity, seventh order polynomial function is used to approximate the standard normal cumulative function in 

this paper because it has high enough accuracy. Our formulae involve more equations and variables and thus, 

the solution time is longer than that in the literature
6
. In this small case study, the solution times of all methods 

are similar. 

 

 Net Profit Gap (%) 
Solution time 

(s) 

SINGLE 

EQUATIONS 

SINGLE 

VARIABLES 

Li et al. 2004 38733.69  0.03 11 13 

5
th

 polynomial 38882.36 0.38 0.04 37 39 

7
th

 polynomial 38685.95 -0.12 0.05 41 43 

9
th

 polynomial 38717.32 -0.04 0.05 47 49 

Table 5.1 Accuracies of different polynomial functions 

 

In Table 5.2, the revenue calculated from eq (9) using GAMS for 90# gasoline is compared with the result by 

integrating eq (3) directly using MATLAB
,38

 at different correlation coefficients. The price and demand are 

non-truncated and the standard deviation of 90# gasoline is 300 Yuan/ton. The production rate of 90# gasoline is 

fixed to 39.565 at all correlation coefficients. MATLAB


 uses rigorous double integral to compute revenue and 

thus accurate. We can see that the gap between the approximation formulae and MATLAB


 is very small. It is 

difficult to implement MATLAB


 into refinery planning model because MATLAB


 takes very long time to 

compute eq (3) and it is difficult to iteratively communicate MATLAB


 with an optimization solver. 
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 MATLAB 
7

th
 polynomial 

approximation 
Gap,% 

0.0 1.24740E+05 1.24720E+05 -0.016 

0.1 1.24780E+05 1.24760E+05 -0.016 

0.2 1.24830E+05 1.24810E+05 -0.016 

0.3 1.24870E+05 1.24850E+05 -0.016 

0.4 1.24920E+05 1.24900E+05 -0.016 

0.5 1.24960E+05 1.24950E+05 -0.008 

Table 5.2 Comparison with MATLAB 

10.2. Effect of correlation 

In this case, we consider the influence of correlation coefficient on plant revenue at different CVs (Coefficient 

of Variation, the ratio of the standard deviation σ to the meanμ: CV= /  ). The standard deviation of 90# 

and 93# gasoline at different CVs are listed in Table 6. The standard deviation of 90# and 93# gasoline prices at 

different CVs are assumed to be fixed at 600 and 620 Yuan/ton, respectively. 

 

 CV 

Products 0.2 0.3 0.5 

90# gasoline 10 15 25 

93# gasoline 10 20 35 

Table 6 Standard deviation of products at different CVs for example 1 

 

 
Net Profit, 

Yuan 
Difference,% 

0 10097.50 0.0 

0.1 10589.83 4.9 

0.2 11096.87 9.9 

0.3 11638.74 15.3 

0.4 12225.64 21.1 

0.5 12853.69 27.3 

Table 7 Effect of correlation at CV=0.5 in example 1 

 

The net profits at different correlation coefficients at CV=0.5 are listed in Table 7 (the correlation coefficients 

between all products and their demands are set to be the same). It can be seen that, the net profit at correlation 

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
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coefficient of 0.4 (near the real world data) is 21.1% higher than the net profit calculated by assuming 

independent demand and price (correlation coefficient=0.0). That means, if for a large enough CV of a product, 

assuming independent price and demand may underestimate the net profit by up to 21%. Note that when the 

correlation coefficient is too high (bigger than 0.6), the net profit will decrease significantly. 

In general, the revenue difference between the independent and correlated cases depends on the CV of products. 

In the problem studied here, if the CV of a product takes value of 0.2, the net profit difference between =0.4 

and =0 is about 2%. This difference is about 5% for CV of 0.3. We set =0.4 for correlated demand and price 

because it near the real world value according to the regressed data from EIA
9
. If  is set to be a constant, then 

as the standard deviation of price increases, the revenue increases slightly. However, as the standard deviation of 

demand increases, the revenue decreases significantly. 

 

10.3 Effect of Truncation 

Integrating over the whole range of a normal distribution may give incorrect results to revenue calculation. The 

formulae derived for bivariate double-truncated normal distribution are applied in the model. The results are 

shown in Tables 10 and 11 (the product production rates of truncated cases are fixed to those of the 

non-truncated case for fair comparison). In Table 8 (at CV=0.2), it can be seen that, if the price and demand 

vary inside two standard deviations of their mean values, integrating over the whole range will underestimate 

the revenue by 2 to 3%. If the price and demand vary inside one standard deviation of their mean values, 

integrating over the whole range will underestimate the revenue by about 12%. The revenue difference between 

truncated and non-truncated becomes much more significant for large enough CV. In Table 8 (at CV=0.5), 

integrating over the whole range will underestimate the revenue from 20% up to 130%. 
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CV=0.2 CV=0.5 

Integration 

Range of 

Non-truncated 

case 

Integration Ranges of  

Truncated Cases 

Integration 

Range of 

Non-truncated 

case 

Integration Ranges of  

Truncated Cases 

 (–, +) (+/–2) (+/–) (–, +) (+/–2) (+/–) 

0 38685.9 39847.6 43513.6 10097.5 14986.6 23935.1 

0.1 38851.2 39948.7 43772.7 10589.8 15234.4 24545.5 

0.2 39021.0 40107.0 43958.2 11096.9 15556.8 25030.0 

0.3 39202.3 40418.5 44166.1 11638.7 16067.2 25457.7 

0.4 39398.5 40792.3 44369.3 12225.6 16693.6 25907.6 

0.5 39608.6 39418.8 44445.2 12853.7 15504.5 26286.5 

Table 8 Effect of truncation at CV=0.2 and CV=0.5 in example 1 

 

10.4 Effect of customer service levels 

Table 9 lists the net profits when the constraints for Type 1 and 2 service levels are added into the model. The 

price and demand vary inside two standard deviations of their mean values. The CVs of demand and price are 

set to 0.2. The net profits in the second column (No C.L./F.L.) are slightly higher than those in the third column 

of Table 8 because the product production rates are free to change in this case. 

It can be seen that, the net profit decreases when we set Type 1 service level target to 0.5. This is because the 

production rate has to be greater than certain value to satisfy the customer demand. Even though a 50% of 

confidence level seems to be low, the actual fill rates achieved are high enough: 92.% and 94.8% for product 1 

and 2, respectively. In this case, the gap between these two service levels is rather big. When fill rate is set to 0.9, 

the net profit decreases by about 7~10% compare to “No C.L./F.L.” case. In this case, the net profit becomes 

negative (-38408.2 Yuan at =0.4) when we set too high C.L. target (e.g., 95%). The plant loses money if the 

customer demand has to be satisfied at too high ratio. A planning strategy taking Type 1 service level target into 

account only might be thus suboptimal. A plant has to compromise between the net profit and the two service 
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levels. In fact, when C.L. is 95%, the actual fill rates for product 1 and 2 are both 99.9%, which are 

unnecessarily high. In this case, setting a Type 2 service level target, F.L.=0.9, is a better choice. 

 

 No C.L./F.L. C.L.=0.5 F.L.=0.90 

0 39885.4 28469.6 35868.0 

0.1 39980.6 28877.1 36136.1 

0.2 40135.6 29373.0 36478.4 

0.3 40445.1 30052.0 36987.2 

0.4 40817.8 30805.2 37557.8 

0.5 39439.4 29713.7 36318.7 

No C.L./F.L.: No service level constraints are added;  

C.L.: Type 1 service level constraint is added; 

F.L.: Type 2 service level constraint is added. 

Table 9 Net profit at different service levels at CV=0.2 in example 1 

 

10.5 Example 2 

A larger size example (example 2) was used to illustrate the results using our derived formula. A process flow 

diagram of a refinery plant is shown in Figure 4. Details of this example can be found in Li et al.
39,40

. The 

problem contains three main production units: CDU (Crude Distillation Unit), GB (Gasoline Blending) and DB 

(Diesel Oil Blending). Crude oil is separated into three fractions by CDU. Gasoline and MTBE enter the GB to 

produce two products: 90# gasoline and 93# gasoline. Diesel oil and naphtha enter the DB to produce another 

two products: -10# diesel and 0# diesel. The prices (Yuan/ton) of the raw materials and the products are listed in 

Table 10. The capacity of the CDU is 400 ton/day; the CDU operation cost is 20 Yuan/ton/day. The CDU 

transfer ratios of crude oil to gasoline, to diesel oil, and to naphtha are fixed at 0.2, 0.3 and 0.5, respectively. The 

market demands for 90# gasoline and 93# gasoline are assumed to conform to normal distributions, N(50, 25) 

and N(40, 25), respectively. For the sake of simplicity, the market demands for the other two products are 

assumed to be deterministic without losing the generality of the model. The objective of this case study is to 

determine the optimal planning strategy for the refinery under uncertain market conditions. The results are 

shown in Table 11. 
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U 

GASOLINE 

 

G 

 

B 

 

D 

 

B 

NAPHTHA 

DIESEL OIL 

90 # GASOLINE 

93 # GASOLINE 

-5 # DIES OIL 

0 # DIESEL OIL 

MTBE 

CRUDE OIL 

In Table 11, it can be seen that, as  increases, the net profit increases along each column. In the second and 

third column, confidence level and fill rate are considered and assumed to be 95%. The net profit reduced by 

around 30% and 12% when C.L. and F.L. are set to 95%, respectively. In the truncated case, the net profit 

increases by 1.4% to 4.5% when the degree of truncation is (+/–2). The net profit increases by 14.8% to 

22.3% when the degree of truncation is (+/–). 

 

Table 10 Price Data (Yuan/ton) for example 2 

 

 

 

 

 

 

Figure 4 The configuration of example 2 

 

 Non-truncated Truncated 

 No. C.L./F.L. C.L.=0.95 F.L.=0.95 (+/–2) (+/–) 

0 120,118.8  81,967.0  102,912.8  125,549.6  146,859.5  

0.1 121,971.4  84,814.5  105,452.8  126,730.4  147,108.9  

0.2 123,843.1  87,698.7  107,975.3  128,044.3  147,388.0  

0.3 125,730.8  90,600.8  110,494.3  129,586.9  147,776.8  

0.4 127,632.7  93,495.6  113,026.5  131,271.3  148,242.2  

0.5 129,551.4  96,490.6  115,577.7  131,312.3  148,690.1  

Table 11 Results from example 2 

 

 

 

Raw Material Products 

Crude Oil MTBE 90# gasoline 93# gasoline -5# diesel 0# diesel 

1400 3500 3215 3387 2700 2500 
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12. Conclusion 

In this paper, the correlation between price and demand as well as their integration ranges are studied. 

Theoretical derivations are performed and several case studies are developed to study the influences of 

correlation and truncation on plant revenue. Case studies show that, for a large enough CV of a product, 

assuming independent price and demand may underestimate the revenue by up to 20%. Since the real world 

demands or prices vary in limited ranges, integrating over the whole range of a normal distribution, which some 

research has done, may give incorrect results. This paper thus approximates a bivariate double-truncated normal 

distribution for demand and price. Case studies show that the degree of truncation can significantly influence the 

on plant revenue. 

To handle possible unmet customer demands, the hard-to-specify penalty functions of the two-stage 

programming are avoided and replaced by two of the decision maker’s service level targets, namely the 

confidence level and fill rate target. Confidence level or the Type 1 service level is commonly used in 

chance-constrained programming. However, fill rate or the Type 2 service level is a greater concern of most 

managers. Two types of service levels, Type 1 and 2, are implemented into the planning model in this paper. 

Case studies show that a planning strategy that satisfies certain confidence level targets might be too generous 

compared to a strategy that satisfies a fill rate target. Case studies including refinery planning problems were 

used to illustrate the proposed approach. 

 



 33 

Literature Cited 

(1) Gupta, A.; Maranas, C. D. Managing demand uncertainty in supply chain planning, Comput. Chem. Eng., 2003, 27, 

1219. 

(2) Li, P.; Moritz Wendt; Günter Wozny Optimal Operations Planning under Uncertainty by Using Probabilistic 

Programming, Proceedings Foundations of Computer-Aided Process Operations (FOCAPO 2003), Coral Springs, 

Florida, USA, January 12-15, 2003. 

(3) Rooney, W. C.; Biegler, L. T. Optimal process design with model parameter uncertainty and process variability, AIChE 

J, 2003, 49, 438. 

(4) Petkov, S. B.; Maranas, C. D. Multiperiod planning and scheduling of multiproduct batch plants under demand 

uncertainty, Ind. Eng. Chem. Res., 1997, 36 4864-4881. 

(5) Jung, J. Y.; Blau, G.; Pekny, J. F.; Reklaitis G. V.; Eversdyk, D. A simulation based optimization approach to supply 

chain management under demand uncertainty, Comput. Chem. Eng. 2004, 28 (10), 2087–2106. 

(6) Li W. K.; Chi-Wai Hui; Pu Li; An-Xue Li Refinery planning under uncertainty, Ind. Eng. Chem. Res. 2004, 43, 

6742-6755. 

(7) Roberto A. De Santis, Crude oil price fluctuations and Saudi Arabia's behaviour, Energy Economics, 2003, 25(2), 

155-173. 

(8) Cooper, John C.B. Price elasticity of demand for crude oil: estimates for 23 countries. OPEC Review, 2003, 27 (1), 1-8. 

(9) The U.S. Energy Information Administration, http://www.eia.doe.gov 

(10) Jensen, J.L., Lake, L.W., Corbett, P.W.M., and Goggin, D.J., Statistics for petroleum engineers and geoscientists, New 

Jersey, Prentice Hall, 1997. 

(11) Thomopoulos, N.T., Applied Forecasting Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1980. 

http://www.eia.doe.gov/


 34 

(12) Bookbinder, J.H., and A.E. Lordahl, Estimation of Inventory Re-Order Levels Using the Bootstrap Statistical Procedure, 

IIE Transactions, 1989, 21, 302-312. 

(13) Johnson, A.C., and Thomopoulos, N.T., Use of the Left-Truncated Normal Distribution for Improving Achieved 

Service Levels, Proceedings of the Decision Sciences Institute, 2002, 2033-2041. 

(14) Johnson, A.C., and Dhungel, B.K., Approximation of the Cumulative Distribution Function of the Bivariate Truncated 

Normal Distribution, Proceedings of the Decision Sciences Institute, 2003, 3111-3118. 

(15) Clay, R.L.; Grossman, I.E. A disaggregation algorithm for the optimization of stochastic planning models, Comput. 

Chem. Eng., 1997, 21, 751. 

(16) Kall, P.; Wallace, S. W. Stochastic programming. New York: Wiley, 1994. 

(17) Zimmermann H.J. An Application-Oriented View of Modeling Uncertainty. Eur. J. Oper. Res. 2000, 122, 190-198. 

(18) Kim, K. J.; Diwekar, U. M. Efficient Combinatorial Optimization under Uncertainty. 1. Algorithm Development, Ind. 

Eng. Chem. Res., 2002, 41 1276. 

(19) Applequist, G. E.; Pekny, J. F.; Reklaitis, G. V. Risk and uncertainty in managing chemical manufacturing supply 

chains, Comput. Chem. Eng. 2000, 24, 2211-2222. 

(20) Ierapetritou, M.G.; Pistikopoulos, E.N. Batch Plant Design and Operations under Uncertainty, Ind. Eng. Chem. Res., 

1996, 35 772. 

(21) Liu, M. L.; Sahinidis, N.V. Optimiztion in Process Planning under Uncertainty Ind. Eng. Chem. Res., 1996, 35 4154. 

(22) Dantzig, G. B. Linear programming under uncertainty, Management Science, 1955, 1:197-206. 

(23) Wellons, H.S.; Reklaitis, G. V. The design of Multiproduct batch plants under uncertainty with stage expansion, 

Comput. Chem. Eng., 1989, 13, 115-126. 

(24) Yi G.; Reklaitis G.V. Optimal design of batch-storage network with uncertainty and waste treatments, AIChE J., 2006, 

52 (10), 3473-3490. 

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=4/2


 35 

(25) Lee, Y. G.; Malone, M. F.  A General Treatment of Uncertainties in Batch Process Planning, Ind. Eng. Chem. Res., 

2001, 40 1507 

(26) Neiro, S.M.S.; Pinto, J., Supply Chain Optimization of Petroleum Refinery Complexes, The Foundations of Computer 

Aided Process Operations Conference (FOCAPO 2003), Coral Springs, Florida, USA, January 12-15, 2003. 

(27) Balasubramanian J.; Grossmann I.E. Approximation to multistage stochastic optimization in multiperiod batch plant 

scheduling under demand uncertainty, Ind. Eng. Chem. Res. 2004, 43 (14): 3695-3713. 

(28) Janak S.L.; Lin X.X.; Floudas C.A. A new robust optimization approach for scheduling under uncertainty - II. 

Uncertainty with known probability distribution, Comput. Chem. Eng., 2007, 31 (3), 171-195. 

(29) Bonfill A.; Espuna A.; Puigjaner L. Addressing robustness in scheduling batch processes with uncertain operation times 

Ind. Eng. Chem. Res. 2005, 44 (5), 1524-1534. 

(30) Applequist, G. E.; Pekny, J. F.; Reklaitis, G. V. Risk and uncertainty in managing chemical manufacturing supply 

chains, Comput. Chem. Eng. 2000, 24, 2211-2222. 

(31) Chen C.L.; Lee W.C. Multi-objective optimization of multi-echelon supply chain networks with uncertain product 

demands and prices, Comput. Chem. Eng., 2004, 28 (6-7): 1131-1144. 

(32) Guillen G.; Mele FD.; Espuna A. et al. Addressing the design of chemical supply chains under demand uncertainty, Ind. 

Eng. Chem. Res. 2006, 45 (22), 7566-7581. 

(33) Mele F.D.; Guillen G.; Espuna A. et al. An agent-based approach for supply chain retrofitting under uncertainty, 

Comput. Chem. Eng., 2007, 31(5-6), 722-735. 

(34) Abramowitz & Stegun, Handbook of Mathematical Functions, Dover Publications, 1965. 

(35) Nahmias, S. Production and operations analysis, McGraw-Hill, 2001. 

(36) Hopp, W. J.; Spearman, M. L. Factory Physics: foundations of manufacturing management, Irwin/McGraw-Hill, 2000. 

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=19/1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=19/1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=17/3
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=17/3
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=26/1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=8/1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=8/1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=28/1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=N1@ank@122KDoK1Ddmf&Func=Abstract&doc=1/2


 36 

(37) Brooke, A.; Kendrik, D.; Meeraus, A.; Raman, R.; Rosenthal, R. E. GAMS—A User’s Guide; GAMS Development 

Corporation, Washington DC, 1998. 

(38) Works, T. M. MATLAB 7.0 (R14) User’s Manual; The MathWorks Inc., Natick, MA, 2004. 

(39) Wenkai L.; Hui CW; Anxue L. New Methodology enhances planning for refined products, Hydrocarbon Processing, 

2003, 82(10), 81-88. 

(40) Li, W.; Hui, C. W. Applying Marginal Value Analysis in Refinery Planning, Chem. Eng. Comm., 2007, 194(7), 

962-974. 



 37 

Appendix I Real world correlation coefficient estimation between demand and price 

 

We estimate the correlation coefficients between demand and price for world crude oil and gasoline by 

regressing the real world 2003-2004 data from EIA
9
. 

The mean and standard deviation of the price and demand are estimated using: 
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where, xi is the sample data from EIA and n is the total number of sample data. x  and  are the UMVUE 

(Uniformly Minimum Variance Unbiased Estimators) of the mean and standard deviation. 

The sample correlation coefficient is used as the estimator for 
10

: 
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                                             (A1.3) 

where, xi and ci  are the sample demand and price data respectively. x  and c  are obtained using (A1.1). 

The correlation coefficient between gasoline (New York Harbor Gasoline Regular) price and demand is 0.44 

and 0.30 for world crude oil for year 2003 and 2004 using eq (A1.3) and the real world data from EIA. Figure 

A.1 shows the profile of the world crude oil demand and price (EIA). In Figure A.1, the crude oil price increases 

generally as the increase of crude oil demand. 
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Figure A.1 World
*
 crude oil demand vs. crude oil price

**
(2003-2004) 

*: Refers to total OECD which includes OECD Europe, Canada, Japan, South Korea, United States, and Other. 

**: Brent (US. Dollars per Barrel) 

 

Appendix II The range of x 

 

To increase accuracy, the polynomial approximation function, eq (17), is regressed in the range [–3, 3] and [–5, 

5] because the domain of (x) used in the single integrals locates in this range with high probability. 

For a normal distribution with mean  and standard deviation , we have 

{    }  0.9545

{    }  0.9973
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where Pr is the operator of the probability computation. In other words, there is a possibility of 99.73% that x 

locates in the range [–3,  +3]. We have 
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In the above equations, with a 99.73% confidence, when U xx 3    and   cc c 3 , UU is at its the upper 

bound, 
UB

UU ; when L xx 3    and   cc c 3 , L is at its the lower bound, LBL . 

Thus, with a 99.73% confidence, we have the range of UU and L: 
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x c
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As P locates in the range [XL, XU], the range of U locates between UU and L.  

Similarly, we can obtain the ranges when the confidence is 95.45%. Table A.1 lists the ranges of L, U and UU at 

different confidences and correlation coefficients. When the degree of truncation is  2 , the ranges of L, U 

and UU are listed in the first row of Table A.1 at different correlation coefficients. In this situation, we use [–3, 3] 

as the range of x and set a0~an in eq (17) to values in the row [–3, 3] in Table 3. When the the degree of 

truncation is  , the ranges of L, U and UU are narrower than those in first row of Table A.1. Thus, we also 

can use [–3, 3] as the range of x. When the degree of truncation is 3  , we use [–5, 5] as the range of x and 

set a0~an in eq (17) to values in the row [–5, 5] in Table 3. 

 

 0 0.1 0.4 0.5 

Range (95.45% confidence) [–2.0, 2.0] [–2.2, 2.2] [–3.1, 3.1] [–3.5, 3.5] 

Range (99.73% confidence) [–3.0, 3.0] [–3.3, 3.3] [–4.6, 4.6] [–5.2, 5.2] 

Table A.1 Range of x 

 

Appendix III Some frequently used integrals for eq (9) 

 

We derive the frequently used integrals in eq (9) (listed in Table 4) in this section. 
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Appendix IV Some frequently used integrals for eq (16) 

 

We derive the frequently used integrals in eq (16) (listed in Table 4) in this section. 
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Appendix V Properties of the revenue 

In this appendix, we show that revenue formulae for correlated and truncated, eq (9) and eq (16), can be reduced 

to the formulae appeared in the literature when demand and price are independent and non-truncated. The 

normally distributed price and demand are independent if =0. In this situation, we have  
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where (.) is the standard normal density function, 
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 . The above equation has reduced to the 

formulae appeared in the literature
4,6

. This also proves that, underlying the formulae used in the literature, the 

demand and price are assumed to be independent and take values in the range (–, +). 

 

It is also easy to show that, when Ux   and Lx  , Uc   and Lc  , the equation for 

truncated and correlated revenue, eq (16), is reduced to the equation for non-truncated and correlated revenue, 

eq (9). In fact, when Lx   then
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 , (L) 0  ; when Ux   then UU  , U(U ) 1  . 

We also have 1LUF  . Thus, the single integrals for AT tend to the single integrals for A (Table 2), i.e., 

T TA1 ~A5 A1~A5 , respectively. Furthermore, TC1 C1=B C1Pc   ; TC2 C2 . Hence, eq (16) reduces 

to eq (9).  

 

Appendix VI Derivation of the bi-truncated expectation and loss function 

 

The expectation of the bi-truncated normal demand, BTN , is: 
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let 
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Since [ ( ) ( )]BTN x XU XLZ Z    , we have 
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                                          (A5.1) 

The bi-truncated loss function, ( )BTNLF P , is: 
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Thus 
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                          (A5.2) 

When the demand conforms to left truncated normal distribution, that is, UX   and XUZ  , we have 

( ) 1,  ( ) 0XU XUZ Z    and [1 ( )]BTN LTN x XLZ     . Thus the left truncated loss function, ( )LTNLF P , 

is 

( ) ( )
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When the demand conforms to right truncated normal distribution, i.e., LX   and XLZ  , then 

( ) 0,  ( ) 0XL XLZ Z    and ( )BTN RTN x XUZ     . Thus the right truncated loss function, ( )RTNLF P , is 
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             (A5.4) 

For non-truncated normal distribution, i.e., UX   and LX  , we have XUZ   and XLZ   

and BTN x  . Eq (A5.2) is reduced to 
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( ) { ( ) [1 ( )]}x XP XP XPLF P Z Z Z                                         (A5.5) 

The above formula can also be found in the literature
4,6

. 

 


