Bulletin of the Graduate School of International Relations I.U.J. No. 6. December 1986

(Research Notes)

A SAS Program for Calculating Prediction Variance
Decomposition in VARMA Models

Noriyoshi Shiraishi

1. Introduction

After the influential papers by Sims (1972, 1980a, 1980b) on causal
relationships among economic variables, the profession has devoted substantial
research efforts to developing and extending time series methodologies for
testing the presence and direction of Granger (1969) causality. These tech-
niques include: in a bivariate system, a cross correlation method suggested
by Haugh (1976) and Pierce (1977), a one-sided distributed lag approach
implied by Granger (1969), and a two-sided distributed lag method developed
by Sims (1972); in a multivariate system, a vector autoregression (VAR)
proposed by Sims (1980a, 1980b) and a vector autoregressive moving average
(VARMA) model developed by Tiao and Box (1981).

Among these methodologies for causality detection, perhaps the most
popular is the VAR developed by Sims since it allows more than two var-
iables to be considered and causal relationships among variables are easily
detected via a prediction variance decomposition technique. As is well
known, however, the Sims VAR often suffers from the overparameterization
of the model. The number of observations available is too small for obtain-
ing precise estimates of too many free parameters in the VAR model.

The VARMA model, as a more general case of the special VAR model,
can be characterized by its parsimonious way of parameterization: that is,
the model uses the smallest number of parameters required for adequately
representing the data. Thus the VARMA in general is a more parsimonious
representation of the process than the VAR. Although the prediction var-
iance decomposition is theoretically applicable, VARMA’s causality detec-
tion procedure has been based almost exclusively on hypothesis testing for
parameters. This is due to the fact that the prediction variance decom-
position technique has not been available in commercial statistical software
packages. Since it is often very difficult to interpret the dynamic behavior
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of the process by looking at and testing the estimated parameters of the model,
there is a definite need to develop a computer program for calculating the
prediction variance decomposition in the VARMA model.

The purpose of this paper is to develop a SAS program for calculating
the prediction variance decomposition in the VARMA model. The software
package SAS (Statistical Analysis System) is selected because of its prevailing
popularity in academic institutions. The SAS program facilitates the im-
plementation of causality detection in the VARMA analysis. In section 2
the prediction variance decomposition is described, and a VARMA model
as well as a VAR model are briefly reviewed. Section 3 reports a SAS pro-
gram. Section 4 shows an example, and some concluding remarks are given
in section 5.

2. Prediction Variance Decomposition

Let z,=(z,, . . ., z) represent a suitably differenced (to achieve sta-
tionarity) k-dimensional vector of multiple time series. Quenouille (1957)
indicated that a time series model for z, can be written as a VARMA (p, q)

process:
$(B)z.=6(B)a., (1)
where
¢(B)=I—¢$,B—. . .—9,B",
6(B)=I—6,B—. . .—0,B° (2)

are matrix polynomials in the backshift operator B (i.e., Bz;=2z.-,), the #’s
and @’s are kx k matrices, and a,=(ay, - - -, aw)’ is a series of white noise
vectors identically and independently distributed as multivariate normal
N(O, 2). If ¢=0, (1) is reduced to a VAR(p) process; if p=0, it is reduced
to a VMA(g) process. Thus the VARMA process in (1) includes a wide
range of multivariate time series models.

Suppose p=0 and ¢=0. If the VARMA(p, ¢) process (1) is invertible,
all roots of the determinantal polynomial |#(B)| are outside the unit circle,
(1) can be written as a VAR (o) process:

0—1(B)¢(B)z,=a‘ (3)
or
=(B)z=a, (4)

98



Bulletin of the Graduate School of International Relations I.U.J. No. 6. December 1986

where

0 \(B)¢(B)==n(B)=I—=n,B—. . .—=m,B"—. . . (5)
and the #’s are kxk matrices. Thus the VARMA representation of the
process in (1) in general is more parsimonious than the VAR representation
in (4). It is noted, however, that a VARMA model should be estimated
with the conditional or exact likelihood ratio method (Tiao and Box 1981)
while a VAR model can be estimated by the unconstrained least square
method (Sims 1980a, 1980b).

Similarly, if the series z, in (1) is stationary, all roots of the determinantal
polynomial |#(B)| are outside the unit circle, (1) can be written as a linear
combination of current and past innovations (or one-step ahead forecast
errors) termed the VMA (o) process:

z2=¢"1(B)o(B)a: (6)
or
z.=¢(B)a, (7)
where
$7(B)6(B)=¢(B)=I—¢B—. . .—¢,B"—. .. C)

and the ¢’s are kX k matrices. The i, j-th element of the coefficient matrix
$n represents the response of the i-th series of z, z., after m periods to an
initial unit shock in the j-th component of @, a;,. The covariance matrix
Z=FEa.a, in general is not diagonal. However, the following theorem allows
the alternative moving average representation of the process having the di-
agonal covariance matrix.

Theorem: Given the positive definite matrix ¥ there exists a unique
nonsingular matrix C, which is lower triangular with one’s on the diagonal,
such that C¥C'=2,, where ¥, is diagonal. (For the proof see Graybill
1983, pp 207-20.)

From the theorem we rewrite (7) as

z=¢(B)CCa: (9)
or
z=v(B)u., (10)
where
»(B)=¢(B)Cl=yy—v,B—. . .—y,B"—. .. (11)
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and

u,=Ca,. (12)
It is noted that the covariance matrix of the innovation u,, Eu.u,’=2,, is
diagonal and (12)

~ r —~
w, | [1 0 0 0] [a )
Upe g 1 0 0 Ayt
Uge |=| €a Ca2 1 0 Qq;
T LC}H_ Crg  Chg » « » 1 ] L @

shows that u, is recursively determined by a,. The i, j-th element of the
coefficient matrix v, also displays the response of the i-th component of z,
2y, after m periods to an initial shock in the j-th component of u., uy..

Let 2,(k) be the minimum mean squared error forecast of z,,, made at
time origin ¢ and e,(k)=z,,,—2.(k) be the corresponding forecast error. It
is well known that %,(k) is the conditional expectation of z,, given all past
history up to time ¢, or equivalently

2.(h) =E(zi.nl2e; 21, - - BB (13)
Also, the error vector e,(k) is normally distributed with zero mean and covar-

iance matrix
A1
Covle.(h)]= T vn&avnm’, (14)
m=0

where v, is the coeflicient matrix in (11).

The covariance matrix ¥, of the innovation vector u, is diagonal and we
write the diagonal entries of X, as ¢2, 63, . . ., 62 Then the i-th diagonal
element of Cov[e,(h)] represents the variance of the i-th component in the
h-step ahead forecast error e,(%), ¢, (k) =2z, +n—2:,(k), and is written as

h-1 k
Var[e,(h)]= m2=0 nZilaﬁuﬁ.,(i, n), (15)
where v, (i, j) denotes the 7, j-th element of the coefficient matrix v, in (11).
It is noted that equation (15) shows that the error variance of each element
in the A-step ahead forecast 2,(k) is decomposed into £ variances of the inno-
vation vector wu, i.e., o3, o3 . . ., oi. Therefore, the relative variance

contribution (RVC) of the j-th component of the innovation vector, u;, to
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the i-th component of the A-step ahead forecast error, ¢;,(%), can be calculated

as

(16)

and is called the prediction variance decomposition (Sims 1980a, 1980b).

3. SAS Program for Calculating Prediction Variance Decomposition in

VARMA Models

A SAS computer program has been developed for calculating the predic-
tion variance decomposition in VARMA models. The program uses the
PROC MATRIX procedure described in the SAS User’s Guide: Statistics
(1982). The following example, which will be discussed in the next section,
is used to illustrate the computer program. Suppose we have the estimated
VARMA model

(I—¢,B—@¢,B*—p.B%) zi=a,, (17)
where

—.242 — 471 .239 —.184 —.043 049 ~
(118)  (.157)  (.168) (120)  (.171)  (.160)
.050 467 —.044 .148 —.291 .132

$r=| (077 (102) (109) |* P (o7n)  (110)  (103) |’
—.027 —.184 .308 —.052 —.092 —.456
(085) (.113)  (.121) (.086)  (.123)  (.115) J

093 —.303 —.097
(113)  (173)  (.176)
—281 237 111
%= (o073 (112) (113) |
001 —.087  .226
(081) (.124)  (.126)

.000197
S=| —.000027 .000082 J , and
.000006  —.000026 .000102

standard errors are in parentheses. Although this example uses the VAR
model as a special case of the VARMA model, the computer program de-
scribed in this section is applicable for a general class of VARMA models.
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Table 1. Program Listing

E 3 £ 3
{  PREDICTION VARIANCE DECOMPOSITION TECHNIQUE FOR VARMA
i  MODELS
NOTE: ASSUME THAT VARMA(P,Q) AND ITS VARIANCE-COVARIANCE
MATRIX HAVE BEEN ALREADY ESTIMATED.

*
PROC MATRIX;

MAORDER=1; ORDER OF MA POLYNOMIAL INCLUDING THE IDENTITY
MATRIX IS SPECIFIED.;

PSIORDER =16; ORDER OF PSI POLYNOMIAL TO BE COMPUTED INCLUDING
THE IDENTITY MATRIX IS SPECIFIED.;

K=3; * DIMENSION K OF THE VECTOR TIME SERIES IS SPEC-
IFIED.;

* ESTIMATED AR POLYNOMINAL IS SPECIFIED.;
AR=100 —.242 —471 239 000 000 —.18¢ —.043 .049
—.093 —.303 —.097/

010 .050 467 —.04¢ 000 000 .148 —.291  .132
281 237 .11
001 —.027 —.184 .308 000 000 —.052 —.092 —.456

.001 —.087 .226;
* ESTIMATED MA POLYNOMINAL IS SPECIFIED.;

(==
—_—o
OO
T=

* ESTIMATED VARIANCE-COVARIANCE MATRIX IS SPEC-
IFIED.;
SIGMA—= .000197 —.000027  .000006/
—.000027  .000082 —.000026/
000006 —.000026  .000102;

* PSI POLYNOMINAL IS COMPUTED.;
PSI=MRATIO (AR, MA, MAORDER, PSIORDER);

* FIND THE UPPER TRIANGULAR (NONSINGULAR) MATRIX C SUCH THAT
C’*SIGMA*C=DSIGMA. ;

UPPER =HALF(SIGMA);

C=XMULT(INV(UPPER),DIAG(UPPER));

DSIGMA = XMULT(DIAG(UPPER),DIAG(UPPER));

* PRINT THE MATRICES TO BE USED.;
PRINT AR MA PSI;
LOWERC=(";
PRINT SIGMA LOWERC DSIGMA;

* COMPUTE RELATIVE VARIANCE CONTRIBUTIONS (RVQ).;

Vv :J(K’K,O) 3

ROW=1:K;

DO STEP=0 TO PSIORDER —1;
VV=VV4+XMULT(PSI{ROW,STEP*K +1:(STEP4-1)*K),INV(C"))##2;
NV=XMULT(VV,DIAG(DSIGMA)); * NV: NOISE VARIANCE;
FEV=XMULT(NV,J(K,K,1)); * FEV: FORCAST ERROR VARIANCE;
RVC=NV¥#/FEV; * RVC: RELATIVE VARIANCE CONTRIBUTION;
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Table 1 (continued).
* PRINT THE COMPUTED RVC’S.;

FCSTEP—STEP | 1;
PRINT FCSTEP RVC;

END;

* *
RVC(I,]J) MEASURES THE RELATIVE VARIANCE CONTRIBUTION OF THE
J-TH COMPONENT OF THE INNOVATION VECTOR TO THE I-TH COM-
PONENT OF THE H(=PSIORDER)-STEP AHEAD FORECAST ERROR. OR
SYMBOLICALLY,

1 2 - K
1 — - —
— e —
RVC(, J): : . . .
K — €
* *;

We use the MRATIO function (SAS/ETS Econometrics and Time Series
Library) to transform a VARMA model into a pure moving average form.
The HALF function is used to obtain the Cholesky decomposition of a matrix.
Table 1 exhibits the annotated program listing.

4. Example

The SAS program described in the previous section was used to examine
the relationship between money supply, real income, and price data on the
Japanese economy. We first estimated the VARMA model over the period
19651—1984I111 using the model building method proposed by Tiao and Box
(1981). The money supply used is M2CD which is the sum of M2 (the
total of the cash currency, deposit money, and quasi-money) and Certificates
of Deposit. The money supply outstanding at the last month of the quarter
is used as the quarterly figure. For both money supply and real income
(RGNP) the data before seasonal adjustments are used. The price (PRICE)
used is the GNP deflator. These series were logged and suitably differenced to
achieve stationarity as z,=[(1—B)(1—B*)InRGNP, (1—B)(1—B4)InPRICE,
(1—B)(1—B%4InM2CD]. The estimated VARMA model is shown in (17)
in Section 3.

Given the estimated VARMA model, we used the SAS program to ex-
amine the relationship between macroeconomic variables. We set the fore-
cast horizon to be 16 quarters, i.e., the variable PSIORDER in the program
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Table 2. Proportions of k-month Ahead Forecast Error Variance Explained by
Each Innovation

By Innovation in:

Forecast Forecast

Error in: Horizon RGNP PRICE M2CD

RGNP 1 1.00 0 0

4 0.87 0.11 0.02

8 0.75 0.22 0.03

12 0.69 0.27 0.04

16 0.65 0.31 0.04

PRICE 1 0.05 0.95 0

4 0.04 0.96 0

8 0.11 0.88 0.01

12 0.09 0.88 0.03

16 0.08 0.88 0.04

M2CD 1 0 0.08 0.92

4 0 0.14 0.86

8 0.01 0.22 0.77

12 0.01 0.28 0.71

16 0.01 0.34 0.65

is 16. The SAS output summarized in Table 2 shows the allocation of fore-
cast error variance to innovations of RGNP, PRICE, and M2CD.

Table 2 shows that the proportion of forecast error variance in real GNP
accounted for by price innovations at the 16-quarter horizon is 31 percent.
Price innovations account for 34 percent of forecast error variance in money
supply at the 16-quarter horizon. 88 percent of forecast error variance in
price at the 16-quarter horizon is explained by its own innovations. Since
the purpose of this section is to provide an example of the SAS program
developed in Section 3, we leave aside questions that may rise from an eco-
nomics perspective.

5. Concluding Remarks

We have presented a SAS computer program for calculating the pre-
diction variance decomposition in VARMA models. The motivation for de-
veloping this computer program stems from the fact that the decomposition
technique has not been available in commercial software packages and thus
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VARMA’s causality detection has been based only on the hypothesis testing
for parameters. Since it is often difficult to interpret the dynamic behavior
of the time series process by looking at and testing the estimated parameters,
there is a need to develop a computer program for calculation the prediction
variance decomposition in VARMA models. It is hoped that the computer

program presented here facilitates the implementation of causality detection
in VARMA analysis.
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