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Abstract

In this paper we develop a dynamic general equilibrium analog to the Roy model.
Specifically, the economy is populated by heterogeneous agents who differ in ability and
sort into skilled and unskilled jobs. Because skilled jobs use ability with greater inten-
sity, high (low) ability workers sort into skilled (unskilled) jobs. As in other frameworks,
this endogenous cutoff ability depends on the economy’s technology and distribution of
workers. In contrast to existing ’assignment’ models, we incorporate endogenous skill—
or, more aptly, ability—biased technical change. We use our framework to engage in
a number of comparative statics. Our model’s tractability allows us to contrast the
short and long-run effects of changes to the economy’s fundamentals. We show that,
for commonly used distributions, a first order stochastic dominance (FOSD) increase
in the ability distribution raises the ability requirement to work in skilled jobs in the
short run. In contrast, the long-run cutoff ability may actually decline. More generally,
the technological response always dampens the increase in ability requirements.
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...The rabbits are plentiful and stupid and even the less skilled man can ensnare
a fair number in a year’s hunting while the exercise of a quite appreciable degree
of skill does not enable the better hunters to catch many more. The trout, on
the other hand, are particularly wily and fight hard, so that many men would
undoubtedly starve if they had to eat only what they themselves caught; but
nevertheless the real fisherman can obtain very big catches in a year’s fishing.

-Roy

1 Introduction

In pioneering work, Roy (1951) proposes a framework which explains the sorting of workers
into two occupations: hunting and fishing. As the opening quote indicates, the difference
between both jobs is their return to ability. There are some jobs which yield greater returns
to ability and jobs which yield little to no return to ability. For the lack of a better term
we term the former skilled jobs and the latter unskilled jobs. Because skilled jobs yield
greater returns to ability, high (low) ability workers sort into skilled (unskilled) jobs. This
self-selection plays an important role in inequality (Heckman and Sedlacek, 1985). It also
governs how changes to the distribution of ability, i.e education, and skill biased technical
change affect inequality.

The sorting mechanics, proposed by Roy, yield insights into issues fundamental to growth
economics. Consider, for instance, the findings of Hendricks and Schoellman (2014). They
show that the ability gap between college and non-college bound students has increased
substantially. They argue that the increase in the ability gap can explain the entire rise in
the skill premium from 1910 to 1960; it can explain half of the increase of the skill premium
in more recent times. Thus, sorting is playing a substantial role at the macroeconomic level.
But growth economics has largely ignored Roy’s insight.1

Our goal in this paper is to shed light on the sorting of workers through the lens of
endogenous growth theory. To do so, we build an R&D-driven growth model with three
building blocks. First, the economy is comprised of heterogeneous agents who differ in
ability. Second, the economy’s agents sort into skilled and unskilled jobs according to their
comparative advantage. Third, in the spirit of Acemoglu (2002), entrepreneurs engage in
R&D to develop skill specific intermediate goods.

Before proceeding further, it’s important to discuss our terminology—especially because
of our model’s relation to directed technical change. Similar to the sorting frameworks of

1Jaimovich and Rebelo (2017) and Grossman and Helpman (2018) are exceptions which we discuss below.
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Costinot and Vogel (2010) and Grossman and Helpman (2018), we abstract from education.
When we use the terms skilled and unskilled, we do not mean college and non-college workers.
We use the terms skilled and unskilled because, in equilibrium, high ability agents obtain
skilled jobs and earn more than their low-ability counterparts. This is important because it
is related to a key difference between our framework and directed technical change Acemoglu
(2002).

Existing theories of skill biased technical change, a la Acemoglu (2002), assume a two
factor structure. Skilled (unskilled) goods are produced using the entire skilled (unskilled)
endowment and skilled (unskilled) intermediate goods. While directed technical change is a
powerful framework—which yields important insight—it is silent concerning the allocation
of workers across different jobs. To understand why, it’s useful to reflect on the model’s as-
sumptions. An implicit assumption of directed technical change is that the marginal product
of skilled (unskilled) workers using unskilled (skilled) intermediates is zero. Consequently,
the economy’s technology—biased or not—has no effect on the allocation of workers.

When skilled and unskilled output is sufficiently substitutable, the economy’s dynamics
are not globally stable; there are three potential regimes: 1) only unskilled jobs, 2) both
skilled and unskilled jobs, 3) only skilled jobs. As we discuss below, if the skilled (unskilled)
technology is too advanced the economy ceases the creation of new (unskilled) skilled ma-
chines and asympotitcally specializes in skilled (unskilled) production. More interestingly,
however, the economy’s distribution of ability can also dictate which regime emerges. We
show that the first regime must emerge if the economy’s relative supply of high ability work-
ers is too low. In contrast, if the economy reaches a critical mass of high ability workers, the
economy converges to the interior regime in which entrepreneurs develop both skilled and
unskilled machines. Finally, if the economy reaches a larger threshold of high ability workers,
entrepreneurs cease creating unskilled machines. In this scenario unskilled jobs disappear
and low ability workers work with machines that they are relatively unproductive with.

Although we focus our attention to the allocation of workers to skilled and unskilled jobs,
we see our framework as a new tool that may prove useful in a number of other applications.
We briefly discuss one example. Although seemingly technical, the stability of the economy’s
dynamics is the driving force behind Acemoglu, Aghion, Bursztyn, and Hemous (2012). In
that framework entrepreneurs invent new machines, either clean or dirty, which are used
by a homogeneous labor force. One of the most interesting results is that when the clean
and dirty production techniques are sufficiently substitutable, the leading technology always
“wins”. Specifically, the dynamics are globally unstable: if the dirty (clean) technology is too
far ahead, innovators only create new dirty (clean) machines. Consequently, a temporary
subsidy to the creation of clean machines can allow the clean technology win.
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Our framework nests a special case which is similar to Acemoglu, Aghion, Bursztyn,
and Hemous (2012). In our model the stability of the economy’s dynamics is governed to a
large extent by how ’different’ the jobs are—and also how ’different’ workers are. One can
easily reinterpret our model as having ’clean’ and ’dirty’ jobs. Workers sort into occupations
in which they have a comparative advantage. If clean and dirty jobs use ability with the
same intensity then, as in Acemoglu, Aghion, Bursztyn, and Hemous (2012), the economy’s
dynamics are globally unstable. If, however, the production techniques differ enough—
e.g, if clean jobs use ability with greater intensity—then the economy’s dynamics are no
longer globally unstable. Consequently, in contrast to Acemoglu, Aghion, Bursztyn, and
Hemous (2012), a temporary subsidy to clean innovation might not be enough to make the
clean technology win. The driving force behind this difference is the worker’s comparative
advantage. Put succinctly, if some workers are very unproductive in ’clean’ jobs, they will
remain in their dirty jobs which prevents the clean technology from taking over.

In recent work Jaimovich and Rebelo (2017) and Grossman and Helpman (2018) develop
growth frameworks which feature worker heterogeneity and endogenous sorting mechanisms.
The former generalizes Romer (1990) to include worker heterogeneity. Workers choose to
work in either manufacturing—which yields a constant wage that is invariant to workers
ability—or R&D which yields a positive ability premium. They use their model to discuss
how changes in taxes affect economic growth. Grossman and Helpman (2018) incorporate
several sources of heterogeneity. Similar to Jaimovich and Rebelo (2017), higher ability
workers work in R&D. However, in contrast to Jaimovich and Rebelo (2017), Grossman
and Helpman (2018) incorporate heterogeneous firms: both R&D and manufacturing. In
their framework, higher productivity firms (R&D or manufacturing) hire relatively more
high ability workers. This leads to a number of interesting results concerning inequality in
growth.

Although our framework incorporates worker heterogeneity and endogenous growth, our
structure and focus is different from Jaimovich and Rebelo (2017) and Grossman and Help-
man (2018). The biggest difference is that our framework features endogenous skill biased
technical change. The technological change is neutral in Jaimovich and Rebelo (2017) and
Grossman and Helpman (2018). They assume that manufacturing productivity and R&D
efficiency grow at the same rate and hence has no effect on the allocation of workers.2 In-
stead, we focus on the sorting between different production jobs and its interrelation with
skill biased technical change. While sorting between manufacturing and R&D employment
is unequivocally important, only 0.6% of workers in Korea—who has the largest fraction of

2In Grossman and Helpman (2018) there is a positive sorting between high productivity firms and high
ability workers, but firm productivity is obtained from a random draw.
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workers employed in R&D—are employed in R&D. Hence in terms of up and downskilling,
the primary focus of our framework, R&D employment cannot play a large role.

Our paper is organized as follows. Section 2 describes the basic setup. Section 3 solves
the model. Section 4 presents the model for common functional forms and we engage in
comparative statics. Section 5 develops a variant of our model which features educated and
uneducated workers. Finally, section 6 concludes.

2 The model

This section presents the model. Unless necessary to avoid ambiguity, we omit time sub-
scripts.

2.1 Production

The economy produces a homogeneous final good Y according to the technology,

Y =
[
Y

ε−1
ε

S + Y
ε−1
ε

U

] ε
ε−1

, (1)

where ε > 0 is the elasticity of substitution between skilled production, YS, and unskilled
production, YU . The representative firm’s profit maximization yields(

PS
PU

)−ε
=
YS
YU

(2)

where PS and PU are the respective prices of YS and YU .
Skilled (unskilled) goods are produced according to

YS =

(∫ ∞
A

gS (α) `S(α)dα

)1−β ∫ NS

0

xβSidi, (3)

and

YU =

(∫ A

0

gU (α) `U(α)dα

)1−β ∫ NU

0

xβUidi, (4)

where xSi (xUi) is the quantity of a skilled (unskilled) machine i, NS (NU) is the endogenous
measure of skilled (unskilled) machines, and lS(α) (lU(α)) is the quantity of labor of ability
α hired for skilled (unskilled) jobs. A worker with ability α has a skilled efficiency gS (α)

and unskilled efficiency gU (α) where:

dgS (α) /gU (α)

dα
≥ 0; (5)
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lim
α→0

gS (α)

gU (α)
= 0; (6)

lim
α→∞

gS (α)

gU (α)
=∞. (7)

In our model, a skilled job yields higher returns to ability than an unskilled job. Conse-
quently, there’s an endogenous cutoff ability, A, which segments workers into skilled and
unskilled jobs. Low ability workers, endowed with ability α < A, obtain unskilled jobs. High
ability workers, endowed with ability α > A, obtain skilled jobs. We derive the endogenous
threshold ability A and discuss its properties in section 3.

The economy is comprised of L workers (which we normalize to one to ease notational
burden). The distribution of workers ability is Φ(α). Therefore in equilibrium∫ ∞

A

gS (α) `S(α)dα =

∫ ∞
A

gS (α) dΦ (α) ; (8)

∫ A

0

gU (α) `U(α)dα =

∫ A

0

gU (α) dΦ (α) . (9)

Equations (8) and (9) are obtained by using that the demand for workers of a given ability
equals the supply: `S(α) = φ(α) for α > A and `U(α) = φ(α) for α < A. We introduce two
last assumptions

lim
A→0

∫ ∞
A

gS (α) dΦ (α) < cS; (10)

lim
A→∞

∫ A

0

gU (α) dΦ (α) < cU . (11)

Assumptions (10) and (11) ensure that the effective skilled and unskilled labor forces bounded.
When A goes to zero, all workers obtain skilled jobs; this effective labor force is bounded
by cS. In contrast, when A goes to infinity, all workers obtain unskilled jobs; the effective
unskilled labor force is bounded by cU .

Because our structure builds upon directed technical change, it’s worthwhile to discuss
the differences between the two structures. In contrast to directed technical change—which
has two exogenous endowments of skilled and unskilled labor—our framework incorporates
heterogeneous workers who choose to work in the job, either skilled or unskilled, which
yields them the highest wage. We use the term skilled because, in equilibrium, relatively
high ability agents work in skilled jobs. One of the interesting features of our framework
is that the threshold ability is endogenous and skill biased technical change will play a key
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role.

2.2 Factor demands

The production of skilled and unskilled goods is undertaken by perfectly competitive firms
who take wages and prices as given. Consequently workers are paid their marginal revenue
products and hence:

wS (α) = PS (1− β) gS (α)

(∫ ∞
A

gS (α) dΦ (α)

)−β ∫ NS

0

xβSitdi; (12)

wU (α) = PU (1− β) gU (α)

(∫ A

0

gU (α) dΦ (α)

)−β ∫ NU

0

xβUitdi. (13)

Because high ability workers work in skilled jobs, we refer to wS(α) as the skilled wage;
analogously, we refer to wU(α) as the unskilled wage. But the ratio wS(α)/wU(α) is not the
skill premium a la Acemoglu (2002). Instead it is the relative payoff of a worker, endowed
with ability α, who works in a skilled job. We solve the model in section 3, but equations
(12) and (13) provide insight to the allocation of workers. It’s useful to look at the relative
wage rate,

wS (α)

wU (α)
=
gS (α)

gU (α)

(
PS
PU

)(∫∞
A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

)−β ∫ NS
0

xβSidi∫ NU
0

xβUitdi
. (14)

We plot the relative wage rate (14) in Figure 1a.
Low (high) ability agents endowed with α < A (A < α), choose to work in an unskilled

(skilled) job because the relative wage wS(α)/wU(α) is less (greater) than one. Assumptions
(5), (6), and (7) ensure that (14) is increasing in α and that some portion of the labor force
segments into both types of job. The relative payoff of working in a skilled job is increasing
in the relative price of skilled output, PS/PU , and it is decreasing in the relative effective
skilled labor force,

∫∞
A
gS (α) dΦ (α) /

∫ A
0
gU (α) dΦ (α). It is also increasing in the relative

supply of skill intensive machines,
∫ NS

0
xβSidi/

∫ NU
0

xβUitdi.
The demand for skilled machines is

xSi =

(
PSβ

pSi

) 1
1−β
∫ ∞
A

gS (α) dΦ (α) , (15)
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(a) Sorting pattern (b) Skill biased technical change.

Figure 1: Partial equilibrium sorting

and the demand for unskilled machines

xUi =

(
PUβ

pUi

) 1
1−β
∫ A

0

gU (α) dΦ (α) . (16)

The demand for skilled machines is increasing in the price of the skilled output and decreasing
in its own price. Symmetrically, the demand for unskilled machines is increasing in the price
of unskilled goods and decreasing in its own price. Similar to directed technical change, the
demand for skill specific machines depends on the amount of labor using them. In contrast to
directed technical change, however, the demand for the machines and the allocation of labor
is jointly determined. As Figure 1b shows, when the relative supply of skilled intermediates
increases, the relative wage rate increases—this causes A to decrease and hence the relative
skilled labor force increases.

2.3 Intermediate goods

Following standard practice, we normalize the unit cost of producing a machine to one. The
profit of intermediate producer i in sector j = S, U is thus

πji = xji (pji − 1) . (17)
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Firms choose their price to maximize their profits (17) subject to the demand for machines
(15) and (16). The maximization yields the pricing rule

pS = pU =
1

β
. (18)

Substituting (18) and the demands (15) and (16) into (17) yields the relative profit

π ≡ πS
πU

=

(
PS
PU

) 1
1−β
∫∞
A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

. (19)

The relative profit of skilled intermediate producers is increasing in the relative price, PS/PU ,
and—holding the relative price constant—is increasing in the relative effective skilled labor
force,

∫∞
A
gS (α) dΦ (α) /

∫ A
0
gU (α) dΦ (α) .

2.4 New product innovation

Following Acemoglu (2002) we assume a “lab equipment” specification for R&D (Rivera-Batiz
and Romer, 1991; Acemoglu and Zilibotti, 2001; Acemoglu, 2002)

ṄS = ηSRS and ṄU = ηURU , (20)

where RS is R&D spending for the skill intensive good, and RU is R&D spending for the
unskilled intensive good. Standard asset pricing conditions yield the well-known rate of
return to new product creation

rj = ηjπj, j = u, s. (21)

Substituting (19) into (21) yields the relative rate of return

rS
rU

=
ηS
ηU
π =

ηS
ηU

(
PS
PU

) 1
1−β
∫∞
A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

. (22)

The relative profit of creating new skill intensive machines is increasing in the relative
profit, π, and as such is increasing in the relative price and relative labor force. Changes to
the relative supply of high ability affects the relative rate of return through two mechanisms.
Because skilled machines use relatively high ability workers, an increase to the relative supply
of skilled workers increases the marginal product of skilled machines. But a change in the
relative supply of high ability workers also affects the relative price; Acemoglu (2002) refers
to this as the price effect. We discuss this in detail in the next section where we close the
model.
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3 General equilibrium

The previous section described the model’s basic setup. In this section we close the model.
We first solve for the economy’s instantaneous equilibrium taking the economy’s technology
as exogenous. We then solve for the economy’s steady state and analyze its stability.

3.1 Exogenous technology

Substituting (15), (16), and (18) into (3) and (4) yields the relative supply skilled output

YS
YU

=

(
NS

NU

)(
PS
PU

) β
1−β
(∫∞

A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

)
(23)

substituting the relative demand (2) into (23) yields the relative price

PS
PU

=

(
NS

NU

) −(1−β)
(ε−1)(1−β)+1

(∫∞
A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

) −(1−β)
(ε−1)(1−β)+1

. (24)

The relative price of skilled output is decreasing in the relative technology NS/NU and
the relative labor force

∫∞
A
gS (α) dΦ (α) /

∫ A
0
gU (α) dΦ (α). The intuition behind both is

straightforward but important. When either increase, the relative production of skilled
goods increases. This increase in the relative supply of skilled goods decreases the relative
price. This is the well-known “price effect” (Acemoglu, 2002). The price effect plays a crucial
role in directed technical change. It does in our framework as well. Equation (22) shows
that the relative rate of return is increasing in the relative price. The magnitude of the price
effect is governed by the elasticity of substitution, ε. When ε is large, changes to the relative
supply yield small changes to the relative price. As we show below, the price effect also plays
a crucial role governing the relationship between the allocation of workers and the relative
technology.

In this section, we derive the relationship between the economy’s technology and the
allocation of workers.

Proposition 1. Define

ω (A, n,Φ) ≡ gS (A)

gU (A)

(∫∞
A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

) −1
(ε−1)(1−β)+1

n
(ε−1)(1−β)

(ε−1)(1−β)+1 . (25)

where
n ≡ NS

NU

. (26)
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Under conditions (10) and (11) the short-run ability cutoff is unique and determined by the
implicit equation

A(n,Φ) ≡ argsolve
A

{ω (A, n,Φ) = 1} . (27)

All workers with ability greater (less) than A(n,Φ) work in the skilled (unskilled) jobs.
Proof: See the appendix.

We define A(n,Φ) as the short-run cutoff ability because it holds the technology constant.
The following corollary characterizes the relationship between the relative technology and
the allocation of workers.

Corollary 1. When ε > 1,

dA(n,Φ)

d lnn
=

− (ε− 1) (1− β)

((ε− 1) (1− β) + 1) g′ (A(n,Φ)) + λ(A(n,Φ))
< 0; (28)

d ln
(∫∞

A
gS (α) dΦ (α) /

∫ A
0
gU (α) dΦ (α)

)
d lnn

= −λ(A(n,Φ))
dA(n,Φ)

d lnn
> 0 (29)

where
λ(A(n,Φ) ≡ φ (A(n,Φ)) gS (A(n,Φ))∫∞

A(n,Φ)
gS (α) dΦ (α)

+
φ (A(n,Φ)) gU (A(n,Φ))∫ A(n,Φ)

0
gU (α) dΦ (α)

. (30)

and
g′ (A(n,Φ)) ≡ d ln(gS(A)/gU(A))

dA
(31)

When ε < 1, (28) and (29) are reversed.
Proof: See the appendix.

Equation (28) implies that when YS and YU are substitutes (complements), an increase
in n leads to a lower (higher) ability cutoff. To understand the intuition note that

ω (A(n,Φ), n,Φ(α)) =

(
gS(A(n,Φ))

gU(A(n,Φ))

)(
PS
PU

)(
YS
LS

)(
LU
YU

)
= 1.

By definition, a worker with ability A(n,Φ) must be indifferent to working in both jobs. An
increase in the relative technology, n, increases the relative marginal product of working as
a skilled worker. But, because the relative supply of skilled production also increases, the
relative price (PS/PU) falls. When the goods are substitutes, the price effect is compara-
tively weak—consequently, the relative marginal revenue product of skilled workers increases.
Because the marginal revenue product of skilled workers rises, workers reallocate towards
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skilled jobs—hence A(n,Φ) decreases. In contrast, when the goods are complements, the
price effect is strong. In this case, the relative wage rate of skilled workers declines and
hence A(n,Φ) increases. Equation (29) implies that if A(n,Φ) decreases (increases), the rel-
ative employment of skilled workers increases (decreases). Beyond the qualitative direction,
however, the magnitude of the changes to the ratio of employment (LS/LU) is important.

Combining (28) and (29) yields

d ln(
∫∞
A
gS (α) dΦ (α) /

∫ A
0
gU (α) dΦ (α))

d lnn
=

(ε− 1) (1− β)
((ε−1)(1−β)+1)g′(A(n,Φ))

λ(A(n,Φ))
+ 1

(32)

note that the term g′ (A(n,Φ)) captures how different skilled and unskilled jobs are with
respect to their returns to ability. If the two jobs are identical (and hence g′ (A(n,Φ)) = 0),
the elasticity of employment with respect to n is given by the constant (ε− 1) (1− β) . In
contrast, when the returns to ability are much larger in the skilled sector, the denomina-
tor is large and hence skill biased technical change induces little labor reallocations. An-
other important determinant is the elasticity of the relative labor supply with respect to
A, λ(A(n,Φ)). When λ(A) is large, the relative labor supply is more elastic with respect
to changes in n. Ultimately, the shape of λ(A) depends on the functional forms for gS(α),
gU(α), and Φ(α).

3.2 Endogenous technology

Having solved for the short-run cutoff ability, A(n,Φ), as an implicit function of the relative
technology n and the distribution of ability Φ, we now endogenize the technology. In the
steady state, the rate of return to creating skilled and unskilled machines must be equal.
This leads to our next proposition.

Proposition 2. Define

Γ (A,Φ) ≡
(
ηS
ηU

)(
gS (A)

gU (A)

) 1
(ε−1)(1−β)

(∫∞
A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

) (ε−1)(1−β)−1
(ε−1)(1−β)

. (33)

If
ε < (1− β)−1 + 1 ≡ ε̃, (34)

then the economy’s steady state is unique

A(Φ) ≡ argsolve
A

{Γ (A,Φ) = 1} ; (35)
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nss =

(
ηS
ηU

)ε(1−β)+β
(∫∞

A
gS (α) dΦ (α)∫ A

0
gU (α) dΦ (α)

)(ε−1)(1−β)

. (36)

Proof: See the appendix.

Note that in the steady state, the long-run cutoff ability, and relative technology, is
determined solely by the fundamentals of the economy: the R&D parameters, ηS and ηU ,
the ability functions, gS and gU , and the distribution of ability Φ(α). We discuss how
changes to the distribution of ability affects the economy in section 5. Before doing so,
we first discuss the properties of (35). The restriction ε < ε̃, ensures that Γ (A,Φ(α)) is
monotonically decreasing (increasing) for ε < 1 (1 < ε). When ε̃ < ε, (33) might not be
monotonic. We postpone a discussion of this case until section 4.

3.3 Stability of the steady state

Substituting (24) into (22)

rS
rU

=
ηS
ηU

( ∫∞
A(n,Φ)

gS (α) dΦ (α)∫ A(n,Φ)

0
gU (α) dΦ (α)

) (ε−1)(1−β)
(ε−1)(1−β)+1

n
−1

(ε−1)(1−β)+1 . (37)

The transitional dynamics in this type of models is well-known: when the rate of return
to creating skilled machines is larger (smaller) than the rate of return to creating unskilled
machines, all R&D is directed to creating skilled (unskilled) machines. Therefore, on the
transition path, n increases (decreases). Stability requires that the relative rate of return is
decreasing in n.

Holding the allocation of workers constant, the relative rate of return is decreasing in
n. As n increases, skilled workers become more productive and produce more goods. But
the increased production of skilled goods decreases the relative price PS/PU . As the relative
price decreases, so too does the profitability of creating skilled machines. This is the driving
force behind the stability of directed technical change (Acemoglu, 2002). Here, however,
there is an additional mechanism. Recall Lemma 1: when skilled and unskilled output are
substitutes (complements), an increase in n causes the cutoff ability A to decrease and hence
the relative labor supply

∫∞
A
gS (α) dΦ (α) /

∫ A
0
gU (α) dΦ (α) to increase.

Taking the log of (37) and totally differentiating with respect to n yields

d ln (rS/rU)

d lnn
=
λ(A(n,Φ)) ((ε− 1) (1− β)− 1)− g′ (A(n,Φ))

((ε− 1) (1− β) + 1) g′ (A(n,Φ)) + λ(A(n,Φ))
, (38)

when ε < ε̃, the numerator is always negative—this implies that the system is globally stable.
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Figure 2: Globally stable dynamics

To further understand the dynamics, it is useful to reduce the dimensionality of the
problem. Combining (27) with (37) allows us to obtain the relative rate of return as a
composite function of n and Φ,

rS
rU

=
ηS
ηU

( ∫∞
A(n,Φ)

gS (α) dΦ (α)∫ A(n,Φ)

0
gU (α) dΦ (α)

) (ε−1)(1−β)−1
(ε−1)(1−β) (

gS (A(n,Φ))

gU (A(n,Φ))

) 1
(ε−1)(1−β)

. (39)

For both cases, complements or weak substitutes, when r > 1, all R&D is devoted to
increasing the number of skilled machines. The difference lies in how changes in n affects
A(n,Φ). Equation (28) established that A(n,Φ) is increasing (decreasing) in n when the
goods are complements (substitutes). Figure (2a) depicts the dynamics when the goods are
complements; Figure (2b) depicts the case of weak substitutes (ε̃ > ε > 1). In both cases,
the system is globally stable.

4 Comparative statics

Throughout the rest of the paper, to help engage in comparative statics, we assume

gS (α) = αs, and gU (α) = αu, where 1 > s > u ≥ 0. (40)
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This functional form is useful because of the simplicity of the moment generating functions;
it also satisfies restrictions (5), (6), and (5).3

4.1 First order stochastic dominance

Here we analyze the effects of changes to the ability distribution. Recall that Φ̃ first order
stochastically dominates Φ iff

Φ̃(α) ≤ Φ(α), ∀α. (41)

Stochastic domination is useful because it allows us to analyze the effects of an increase in
the relative supply of high ability workers. Hence, the amount of workers beneath a given
ability decreases. We now turn to the effects of a FOSD increase in the distribution from Φ

to Φ̃.

Lemma 1. Suppose that u = 0 and that (41) holds, then

ω
(
A, n, Φ̃

)
ω (A, n,Φ)

≤ 1 (42)

and, consequently,
A(n,Φ) < A(n, Φ̃). (43)

Proof: See the appendix

We will discuss the caveat u = 0, that unskilled jobs yield no return to ability, momen-
tarily. We first discuss the intuition behind Lemma 1. Because ω is increasing in A, (43)
follows trivially from (42). The intuition is straightforward. Holding the technology fixed,
an increase in the supply of high ability workers, reduces the marginal revenue product of
skilled workers. Consequently the relative payoff of working as skilled labor, ω, declines and
hence the cutoff ability must increase. Our next lemma analyzes the long run effect on the
cutoff ability.

Lemma 2. Suppose that u = 0 and that Φ̃ stochastically dominates Φ, there are two cases
depending on the elasticity of substitution

3The functional form implies that the wages are log-linear in ability.

lnwS (α) = ln
(
β

2β
1−β (1− β)

)
+

1

1− β
lnPS(n,A(n,Φ)) + lnNS + s lnα;

lnwU (α) = ln
(
β

2β
1−β (1− β)

)
+

1

1− β
lnPU (n,A(n,Φ)) + lnNU + u lnα

where the wages are log-linear in ability.
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Case 1. When 1 < ε < ε̃,
Γ
(
A, Φ̃

)
Γ (A,Φ)

≤ 1;

A(Φ) < A(Φ̃).

Case 2. When ε̃ < ε,
Γ
(
A, Φ̃

)
Γ (A,Φ)

≤ 1;

provided the economy converges to the interior solution,

A(Φ̃) < A(Φ).

Proof: See the appendix for a discussion.

Recall that the instantaneous cutoff ability, A(n,Φ), yields the cutoff ability at an arbi-
trary moment in time while A(Φ) only holds in the steady state. While an increase in the
relative supply of high ability workers raises the cutoff ability in the short-run, in the long
run the cutoff ability can decrease. The difference lies in the technological response. When
the elasticity of substitution is large enough, the technological response will be large and
hence the cutoff ability actually declines.

Interestingly, when u > 0, an arbitrary FOSD increase in the distribution of ability yields
ambiguous affects on the cutoff ability. The driving force behind changes in A lies with the
changes in the effective relative labor supply of skilled workers. As we mentioned above,
FOSD implies that we move (some) workers from the left of the distribution to the right.
Consider a hypothetical change in the distribution where we move workers from the lowest
ability to Ã < A, while leaving the rest of the distribution unchanged. In this scenario, the
effective unskilled labor force increases relative to skilled labor.

4.2 Pareto

In this section, in order to deal with the case of ε > ε̃ and to help engage in comparative
statics, we assume that ability is governed by a Pareto distribution, where

Φ(α) =

1−
(
b
α

)κ
α > b

0 b > α
, (44)

and κ > 1.
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In this section we solve for the allocation of labor in both the short and the long run.
Once again, the distinction between the short and long run is the technology. In the long
run, the economy’s relative technology, n, is endogenous.

Following (27) the short-run cutoff ability is determined by the implicit function

A(n,Φ) ≡ argsolve
A

{
As−u

((
κ− u
κ− s

)
As−κ

bu−κ − Au−κ

) −1
(ε−1)(1−β)+1

n
(ε−1)(1−β)

(ε−1)(1−β)+1 = 1

}
, (45)

and the long-run cutoff ability, is given by

A(Φ) ≡ argsolve
A

{(
ηS
ηU

)
A

s−u
(ε−1)(1−β)

((
κ− u
κ− s

)
As−κ

bu−κ − Au−κ

) (ε−1)(1−β)−1
(ε−1)(1−β)

= 1

}
. (46)

Because the technology (40) and distributions (44) satisfies Proposition 1’s conditions, the
left hand side of (45) is monotonic in A and hence there’s a unique solution. The long-
run cutoff ability, determined by equation (46), is not necessarily unique when ε > ε̃. We
characterize the solution in our next Proposition.

Proposition 3. There are two cases,

Case 1. If
s− u
κ− s

< ((ε− 1) (1− β)− 1) , (47)

then equation (46) yields one, unstable, root

Case 2. If (47) is reversed, then there are either two (one stable) roots or no roots to (46).
There will be two roots provided,

(
κ− u
κ− s

)(
ηS
ηU

)
M

s−u
(ε−1)(1−β)

(
M s−κ

1−Mu−κ

) (ε−1)(1−β)−1
(ε−1)(1−β)

b(s−u) < 1, (48)

where

M =

(
(ε− 1) (1− β) (s− u)

(s− u)− (κ− s) ((ε− 1) (1− β)− 1)

) 1
κ−u

.

Proof: See the appendix.

Both parameter restrictions, (47) and (48), provides insight into the model. Note that
equation (47) implies that when s ≈ u, the system is necessarily unstable. Intuitively, if
skilled and unskilled jobs are similar with respect to their ability requirements, an increase
to the relative technology will induce a large change in the relative labor supply LS/LU
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Figure 3: Globally dynamics—Pareto

yielding more skill biased technical change. Second, note that κ governs the concentration
of ability. When κ is very large, the economy’s workers are essentially identical. Therefore,
similar to the case of s ≈ u, the system is unstable. Equation (48) shows that the lower
bound parameter, b, plays a crucial role. If the lower bound of ability is too high, the
economy always finds it profitable to create skill-intensive goods.

Recall that the Pareto distribution α ∼ 1−
(
b
α

)κ is comprised of two parameters, κ and b.
The former governs the shape of the distribution and hence the concentration of workers at
the lower end of the ability distribution. As κ increases, the percentage of workers nearby the
lower support (b) increases. In contrast, a reduction in κ implies that there are fewer workers
at the low end of the ability distribution. An increase in b shifts the entire distribution to
the right. We focus our attention on a reduction in κ because it corresponds to a rise in
education—the movement of workers from low ability to high ability.

Our next corollary, characterizes the short-run relationship between κ and the cutoff
ability, A(n,Φ(κ, b)).

Corollary 2. In the short run:

dA(n,Φ)

dκ
=

A
[

u−s
(κ−u)(κ−s) −

bu−κ ln A
b

bu−κ−Au−κ

]
(s− u) ((ε− 1) (1− β) + 1) + (s− κ)− (u−κ)Au−κ

bu−κ−Au−κ
< 0

Proof: Apply the implicit function theorem to equation (45).
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This corollary is not particularly surprising. When the concentration parameter increases,
there are relatively few high ability workers and hence the cutoff ability is low. We now turn
to the effect of an increase in κ on the long-run cutoff ability, A(Φ).

Corollary 3. In the long run:

dA(Φ(κ, b))

dκ
=
−A ((ε− 1) (1− β)− 1)

[
u−s

(κ−u)(κ−s) − b
u−κ ln A

b

bu−κ−Au−κ

]
s− u+ ((ε− 1) (1− β)− 1)

[
(s− κ)− (u−κ)Au−κ

bu−κ−Au−κ

] (49)

There are two cases:

Case 1. If
ε < ε̃,

then
dA(Φ(κ, b))

dκ
> 0.

Case 2. If
ε > ε̃,

then
dA(Φ)

dκ
< 0.

Proof: Apply the implicit function theorem to equation (45).

Corollary 3 establishes two things. Our first result is that if skilled and unskilled goods
are sufficiently substitutable, a decrease in κ (which increases the right tail of the ability
distribution) can actually decrease the cutoff ability to be a skilled worker. Second it yields
the magnitude of the change. This, by itself, is not particularly interesting. But when it is
combined with corollary 2 we obtain our next Proposition

Proposition 4. Suppose that the concentration parameter falls from κ1 to κ2. When ε < ε̃,

A(nss1,Φ(κ1)) < A(nss2,Φ(κ2)) < A(nss1,Φ(κ2)) (50)

where

nss1 =

(
ηS
ηU

)ε(1−β)+β (
LS(A(Φ(κ1))

LU(A(Φ(κ1))

)(ε−1)(1−β)

;

nss2 =

(
ηS
ηU

)ε(1−β)+β (
LS(A(Φ(κ2))

LU(A(Φ(κ2))

)(ε−1)(1−β)

.
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When ε > ε̃,

A(nss2,Φ(κ2)) < A(nss1,Φ(κ1)) < A(nss1,Φ(κ2)) (51)

Proof: See the appendix.

Proposition 4 sheds light on how education affects the difficulty of obtaining skilled jobs.
When the relative supply of high ability workers increases, the ability requirement to obtain
a skilled job increases. But this also induces biased technical change. Consequently, as (50)
shows, after the economy’s technology responds the cutoff ability is lower than the immediate
increase. Interestingly, when ε is large enough, the cutoff ability actually declines. In other
words, in the long-run an increase in the relative supply of high ability workers reduces the
ability requirement to obtain skilled jobs.

5 Conclusion

Whether or not increases to the relative supply of skilled workers leads to more overeducated
workers is obviously important. Recent empirical work has found that increases to the
relative supply of skilled workers leads to deskilling (and hence more overeducated workers),
at least at local levels (Modestino, Shoag, and Ballance, 2015). However, our results suggests
the need for longer time horizons to analyze the effects. Our model predicts that increases
to the relative supply of skilled workers leads to deskilling—in the short run. But in the
long-run, following the induced technical change, the threshold ability to work in the skill-
intensive sector may increase or decrease.

Our model also yields new insight into directed technical change. As in Acemoglu (2002)
and Acemoglu (1998), our model is able to generate strong-bias. But the parameter restric-
tions necessary for strong-bias are incompatible with global stability. Intuitively, if skilled
and unskilled tasks are strong enough substitutes, the price effect is weak. We show that
the price effect is crucial for dynamic stability. Finally, we think our model might prove
useful in a wide variety of applications that directed technical change, in its current form, is
unsuitable for. For instance, the existing literature has no labor reallocations. Consequently
directed technical change is silent concerning, substantial, labor misallocations (Hsieh and
Klenow, 2009). In contrast, a key driving force of our models results is the reallocation of
labor across jobs/tasks.

20



References

Acemoglu, D. (1998): “Why Do New Technologies Complement Skills? Directed Technical
Change And Wage Inequality,” The Quarterly Journal of Economics, 113(4), 1055–1089.

(2002): “Directed Technical Change,” Review of Economic Studies, 69(4), 781–809.

Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous (2012): “The Environment
and Directed Technical Change,” American Economic Review, 102(1), 131–166.

Acemoglu, D., and F. Zilibotti (2001): “Productivity Differences,” The Quarterly Jour-
nal of Economics, 116(2), 563–606.

Costinot, A., and J. Vogel (2010): “Matching and Inequality in the World Economy,”
Journal of Political Economy, 118(4), 747–786.

Grossman, G. M., and E. Helpman (2018): “Growth, Trade, and Inequality,” Econo-
metrica, 86(1), 37–83.

Heckman, J., and G. Sedlacek (1985): “Heterogeneity, Aggregation, and Market Wage
Functions: An Empirical Model of Self-selection in the Labor Market,” Journal of Political
Economy, 93(6), 1077–1125.

Hendricks, L., and T. Schoellman (2014): “Student abilities during the expansion of
US education,” Journal of Monetary Economics, 63(C), 19–36.

Hsieh, C.-T., and P. J. Klenow (2009): “Misallocation and Manufacturing TFP in China
and India,” The Quarterly Journal of Economics, 124(4), 1403–1448.

Jaimovich, N., and S. Rebelo (2017): “Nonlinear Effects of Taxation on Growth,” Jour-
nal of Political Economy, 125(1), 265–291.

Modestino, A. S., D. Shoag, and J. Ballance (2015): “Upskilling: do employers
demand greater skill when skilled workers are plentiful?,” Working Papers 14-17, Federal
Reserve Bank of Boston.

Rivera-Batiz, L. A., and P. M. Romer (1991): “Economic Integration and Endogenous
Growth,” The Quarterly Journal of Economics, 106(2), 531–55.

Romer, P. M. (1990): “Endogenous Technological Change,” Journal of Political Economy,
98(5), S71–102.

21



Roy, A. D. (1951): “SOME THOUGHTS ON THE DISTRIBUTION OF EARNINGS,”
Oxford Economic Papers, 3(2), 135–146.

22


