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Abstract  

Electric vehicles (EVs), with lighter environmental footprint than traditional gasoline vehicles, are 

growing rapidly worldwide. Some countries such as Norway and Canada have successfully 

established EV networks and achieved a significant progress towards EV deployment. While the 

EV technology is becoming popular in developed countries, emerging countries are lacking behind 

mainly because of the huge investment hurdle to establishing EV networks. This paper developed 

an efficient Electric Vehicle Migration Framework (EVMF) aiming to minimize the total costs 

involved in establishing an EV network, using real world data from three major cities of Morocco: 

Rabat, Casablanca, and Fes. A given set of public institutions having a fleet of EVs are first grouped 

into zones based on clustering algorithms. MILP (Mixed Integer Linear Programming) models are 

developed to optimally select EV charging station locations within these organizations, with an 

objective to minimize the total cost. This paper can help to minimize the investment needed to 

establish EV networks. The transition towards EV networks can first take place in cities, especially 

at public institutions, followed by locations among cities. With the framework developed in this 

paper, policy makers can make better decisions on EV network migration. 
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1. Introduction  

1.1 Background  

EV sales have been growing rapidly over the last decade. The number of EVs is estimated 

to reach 6.4 million units in 2021 despite Covid-19 restrictions and component shortages 

(GREENCARS, 2021). The number was only 2.1 million units in 2018 (Irle, 2018). The 

rapid growth is expected to continue. Between 2017 and 2018, sales grew up by 78% in 

China, 34% in Europe, 79% in USA, and 86% worldwide (Irle, 2018). This indicates a 

prospective shift within the transportation sector worldwide as shown in Figure 1. Norway, 

the country known for spreading electrification, has achieved a high level of EVs 

domination and significant carbon emissions reduction. As of December 2021, among all 

new car sales, over 80% were EVs (GREENCARS, 2021). Norway’s government is 

targeting electrification of all new cars within the country by 2025 (Lambert, 2018). Japan 

laid out a “green growth strategy” to reach net zero carbon emissions and generate nearly 

$2 trillion a year in green growth by 2050 (Reuters, 2020). Japan aims to eliminate sales of 

new gasoline-powered vehicles by the mid-2030s, shifting to electric vehicles (Reuters, 

2020). Huge efforts on both the design of EVs and the charging infrastructure were made 

from 2000 in countries such as Norway, Canada, and China, leading to the development of 

necessary EV infrastructure. 

While some countries have achieved significant progress towards the adoption of EVs, 

many others lag behind. (Linke, 2017) pointed out three major barriers to adopting EVs: 

limited variety of EV car models, infrastructure, and mindset. With limited EV 

infrastructure, EV drivers have to research the location of charging stations before driving 

(Linke, 2017). For transition to EVs in BRICS countries, the prominent barriers are 

infrastructure, institutional (lack of supporting regulation), demand, and other specific 

barriers in a specific country (Pratiwi, 2016). 
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Figure 1. Global EV Deliveries (Adopted from Irle 2018) 

 

(Pratiwi, 2016) suggested that building additional public charging stations and government 

support are among the most important strategies to overcome EV migration barriers. Given 

that EV deployment has now mostly been driven by government policies, initiations by 

government institutions have significant social impact on EV migration. Government 

institutions, operating public institutions fleets, can set examples to demonstrate benefits, 

including economic ones, of EV migration. As pointed out by (Ortt, et al., 2013), to 

commercialize new high-tech products such as EVs, a key niche strategy is to “Demo, 

experiment, and develop”, that is, to demonstrate the new product in public in a controlled 

way. Such a strategy can help to change the risk averseness attitude of still-hesitating 

governments and the public, especially from developing countries. As an example of public 

institutions fleets, transit buses between towns and cities, may be the key to the electric 

vehicle revolution (Earthjustice, 2020). Los Angeles Metro has decided to invest in a full 

fleet of zero-emissions electric buses (Nelson & Reyes, 2017). By 2040, all public transit 

buses in California will be fleets of EVs (CARB, 2018). The Government of Canada has 

made clear commitments to reduce emissions from government fleets (Akendi, 2018). In 
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Canada, besides the central government, many provinces and territories have also adopted 

greening policies and procedures for their fleets (Akendi, 2018). It is realized that, though 

governments are directly responsible for a relatively small share of emissions, they have an 

opportunity to lead by example (Akendi, 2018). Canada, the U.S., and Mexico have agreed 

to collaborate to deploy greater amounts of EVs in government fleets (Akendi, 2018). Seven 

countries (Canada, China, France, Japan, Norway, Sweden, the U.K., and the U.S.) have 

signed on the Government Fleet Declaration, committing to deploy greater numbers of EVs 

in government fleets (Akendi, 2018). 

Public institutions can take the lead towards EV migration through electrification of their 

fleets. While these institutions will definitely have more EVs over the next years, a cost-

efficient charging infrastructure for EV fleets is essential. In this paper, optimization of EV 

charging stations is presented as a prospective and efficient migration framework. Each 

government institution is assumed to have a specific fleet of vehicles that is managed by a 

specific fleet management division. In some developed countries such as Canada and 

Netherlands, provinces have taken on greening, and especially EVs, policies and procedures 

for their fleets, and in some cases, they are sharing experiences to support municipal 

governments to implement their own measures (Akendi, 2018). While the deployment of 

EVs is advanced in these countries, it is done independently leading to a separate fleet 

management, which is not optimal. Thus, it is important to manage EV fleets of these 

institutions as a whole under one framework. Since these EVs will be mainly used for work 

purposes, their charging stations can be deployed within the workplace. Besides within 

cities where institutions are located, charging stations are also needed on the highways. This 

paper proposes a framework to tackle the charging facility location problem with the 

following questions in mind: How many charging stations are required and into which 

institutions they should be located? 
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EVs are charged using Electric Vehicle Supply Equipment (EVSE), which are 

differentiated based on the level (power output range of the EVSE outlet), type (the socket 

and connector used for charging), and mode (the communication protocol between the 

vehicle and the charger). This paper adopts the three-level definition of EVSEs as detailed 

in (CEA, 2013): Level 1 costs less than $1000 and can add about 40 miles of range in an 

eight-hour overnight charge. Level 2 costs between $3500 and $6000 and can add about 45 

miles of range in a two-hour charge. Level 1 and level 2 charging stations are also called 

slow charging stations. Level 3 costs between $60,000 and $100,000 and can add 50 to 90 

miles in half an hour, which is also called fast charging station. Among the three levels, 

level 2 chargers are the most common public chargers used within the institutions. For 

charging stations located in public institutions, level 1 and level 2 are suitable. On highways 

where time is an important constraint, level 3 charging stations is suitable. 

This paper focuses on the design of a network of EV charging stations to serve a network 

of public institutions. It is cost prohibitive to install charging stations at all institutions. To 

reduce cost, different levels of EV charging stations are differentiated for different 

purposes: Level 1 charging stations are used for overnight charging while Level 2 charging 

stations are used during working hours. Level 3 charging stations are used on highways or 

between two busy and distant city zones. This paper seeks to find the optimal locations of 

EV charging stations among all city institutions and on highways.  

The EVMF proposed in this paper consists of two stages, Offline and Online, as shown in 

Figure 2. 

The input to EVMF is the geographic region(s) wishing to establish an EV network. At the 

Offline Stage, EVMF first applies remote sensing techniques to identify geographic 

locations (in this paper, locations of public institutions) to be served by EVs. The output is 

a location map. Next, locations are grouped into zones applying clustering algorithms and 
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heuristics. Detailed location/zone data are processed at the data mining step. The processed 

data will be passed to the Online Stage to set values of parameters. 

Figure 2. The Electric Vehicle Migration Framework (EVMF) 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the Online Stage, an optimization model is called to read the processed data from the 

data mining step and set values to its parameters. The optimization model is then solved to 

find the optimal EV network. Scenario analysis is conducted based on different parameter 

settings. A learning cycle is used to understand insights on various optimal EV networks 

found by the optimization model, which involves both Offline and Online Stages. At the 

scenario analysis step, various settings of several key parameters (e.g., HWD) are tested. 
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followed by the data mining to process updated data. The optimal EV network 

corresponding to the new settings is obtained by calling the optimization model. The 

learning cycle varies settings of key parameters and requires several iterations. The outputs 

from the learning cycles provide decision makers essential insights on future EV network 

of the geographic region(s). 

1.2 Literature Review  

The facility location problem related to EV charging stations have been studied in several 

papers. Most papers (e.g.: (Hanabusa & Horiguchi, 2011); (Lee, et al., 2014)) in the 

literature presented models related to fast (level 3) charging stations, which are usually 

required for long-distance trips on highways. In such situation, the EV charging demand is 

computed based on the number of EVs on the road as well as drivers’ behavior. Some papers 

tackle the problem from the demand’s point of view, while others tackle it based on the 

drivers’ choices and decisions. The goal is generally similar which consists of allotting 

demand to charging stations in a balanced way. As a common tool, traffic assignment is 

used for modeling of EV drivers’ route choice (Chen, et al., 2014). Some studies (e.g.: (Liu, 

2012)) considered gas stations’ locations as a point of origin to determine the location of 

EV charging stations. However, such approach, similarly to previous ones, does not 

consider the range anxiety issue, which is the main challenge of EVs. 

Some other studies focused on slow (level 2 and level 1) charging stations ( (Frade, et al., 

2011); (Xi, et al., 2013); (Chen, et al., 2013); (Cavadas, et al., 2015)). Slow charging 

stations are usually used in residential areas or in the workplace. The models presented in 

these studies typically used regression analysis to estimate demand within cities. The factors 

considered included employment, residence, and traffic data. The goal was to therefore 

maximize the coverage of all EVs given the available charging stations. Regarding the 
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coverage problem, the distinction between full coverage and partial coverage was usually 

missing.  

Only a few studies ( (Huang, et al., 2016); (Sun, et al., 2020), (Liu, 2012); (Liu, et al., 2015); 

(Jordán, et al., 2018)) considered both fast and slow charging stations. (Huang, et al., 2016) 

considered both fast charging stations for short time needs (i.e. on highways) and slow 

charging stations for long time needs (i.e. within cities). The paper also used the traffic 

assignment method. For fast charging stations, the paper used a model with geometric 

segmentation and considers EVs moving within network links. The main parameter defined 

is the remaining battery capacity (driving distance). The driver should be able to find a fast 

charging station before complete battery depletion. For slow charging stations, the demand 

for charging is based on zones. The parameter defined is the human walking distance 

(HWD). Hence, a specific point within a zone is covered if and only if the Euclidean 

distance between this point and the charging station is less than the maximum HWD. The 

models are designed to tackle range anxiety by minimizing the total cost while guaranteeing 

a given level of demand coverage. (Sun, et al., 2020) also considered slow and fast charging 

stations and tackled the limited resources’ constraint for both parking vehicles and vehicles 

on long journeys. The paper used sensitivity analysis to identify specific factors having an 

impact on the number and location of charging stations. Two papers ( (Huang, et al., 2016) 

and (Sun, et al., 2020)) found out that travelling distance as well as location’s capacity are 

the main factors influencing the number and location of charging stations. Some other 

papers ( (Liu, 2012); (Liu, et al., 2015)) presented a mixed model, which first determines 

the number of level 1 and level 2 stations within parking and residential areas based on 

economic data and considers gas station locations as a prospective location for level 3 

stations.  (Jordán, et al., 2018) used a multi-agent system to characterize potential charging 

stations areas. Given the large configurations space, (Jordán, et al., 2018) applied 



9 
 

metaheuristics (genetic algorithm) to optimize a set of metrics. The metaheuristics provides 

the most suitable areas of the city for the deployment of EV charging stations. 

Among the highlighted literature, only (Huang, et al., 2016) address the range anxiety issue 

explicitly by ensuring a certain level of demand coverage when minimizing the total cost. 

Still, they do not consider the interaction between EV drivers’ travel behavior and the 

location of fast charging stations. For instance, an EV driver may consider a route that does 

not have any charging station leading to battery depletion. 

Table 1 provides a summary of major existing work tackling EV network design from 

different perspectives. It can be seen from Table 1 that most papers tackled fast charging 

stations only while only a few considered both fast and slow charging stations. In general, 

the EV network design is tackled as an optimization problem. The objective is usually to 

minimize cost/usage/time or maximize utilization/benefits/coverage. Exhaustive reviews 

can also be found in (Amjad, et al., 2018) and (Shareef, et al., 2016). 

Fast charging stations are crucial for solving range anxiety issue. However, in most 

emerging countries, costs incurred to acquire and manage these stations are high, which 

raises the threshold of an electric grid. As a result, slow charging stations in cities remain 

an efficient starting point for emerging countries. Then, fast charging stations can be added 

on highways to ensure the capability to manage fleets among cities. 

To design an EV charging network in emerging countries, this paper starts by adding slow 

charging stations in cities. Then fast charging stations are considered to design EV network 

among cities. Such an approach is convenient for policy makers to migrate towards EV 

networks. In our case, EV users’ travel behavior is controlled since EVs will be mainly used 

for work purposes either within the city or among cities. Furthermore, through grouping 

institutions into zones and ensuring the usage of highways when travelling between cities, 

the proposed EVMF handles range anxiety effectively. 
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Table 1. A summary of major existing work on EV network design 

Author(s) Charging Model Objective Model 
Structure 

(Sun, et al., 2020) Fast & Slow  Exact Max EV flows 
coverage Nodes 

(Jordán, et al., 
2018) Fast & Slow Metaheuristic Max Configuration Encoding 

(Huang, et al., 
2016) Fast & Slow  Exact Min total charging 

cost 
Polygons and 

Links 

(Chung & Kwon, 
2015) Fast  Exact Max flow captured Graph 

(Liu, et al., 2015) Fast & Slow Heuristic Min cost/energy loss Network 

(Chen, et al., 
2014) Fast  Ad hoc Min total travel time Graph 

(Lee, et al., 2014) Fast Exact Min network cost Graph 

(Lam, et al., 2014) Fast  Heuristic Min cost Graph 

(Capar, et al., 
2013) Fast  Heuristic Max flow captured Graph 

(Chen, et al., 
2013) Slow  Heuristic Min total access cost Point 

(Liu, 2012) Fast & Slow  Ad hoc Min # of charging 
stations 

Polygons and 
Links 

(Hanabusa & 
Horiguchi, 2011) Fast  Exact Min total travel time Graph 

(Ge, et al., 2011) Fast  Metaheuristic Min flow captured Graph 

(Kuby & & Lim, 
2005) Fast  Exact Max flow captured Graph 

 

1.3 Contributions  

The contributions from this paper are summarized as follows. 

1) Proposes an integrated, fast, scalable, and flexible framework, EVMF, to facilitate 

decision-making for future EV network migration. 
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This paper proposes a two-stage framework for EV network design. In EVMF, the usage of 

all EVs are considered as an integrated model, and global optimal solutions at various 

scenarios are found. Such an integrated model can find overall better optimal solutions than 

those decentralized models which consider EV usage regionally. To the best of the authors’ 

knowledge, such governmental integration or centralization of EV usage has not been 

proposed in the literature. 

Through scenario analysis, EVMF can find optimal solutions at different settings quickly. 

The execution time of each scenario is very short (in seconds). Such a learning cycle 

provides essential insights for policy makers to plan the migration towards EVs by 

considering budget constraints, available EVs, and other factors. 

EVMF is scalable and flexible. The models in this paper were firstly designed within a city 

then were scaled up to a network of three cities linked with two highways. The extension 

can be done easily and efficiently to a network of institutions within a specific country or 

even between countries. This paper presents models for EV network of public institutions. 

The models can be readily applied to other organizations such as transportation companies, 

travel agencies, city buses, etc., having a fleet of EVs. 

2) Range anxiety issue imbedded into EVMF 

This paper proposes a new way to tackle range anxiety. In the literature, range anxiety 

problem is either avoided or tackled partially. Taking into account HWD when defining a 

zone’s size, this paper assigns each institution to one zone. Within each zone, a charging 

station is designed (either fast or slow charging stations) where EVs users can charge EVs 

within HWD. Since fleets of EVs are managed among all public institutions by government, 

EVs can also be charged in other zones or even between zones. Furthermore, the centralized 

management ensures the flexible distribution of EVs based on demand within each zone. 

For instance, when one EV is being charged, other EVs can be used to maintain the 
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operability of an EV network. On highways, a network of fast charging stations is designed 

while talking into account the distance between two neighboring charging stations. Such 

factors are imbedded into EVMF and the mathematical models developed in this paper. In 

such a way, range anxiety problem is efficiently solved. 

3) Remote sensing, clustering, and data mining were integrated into EV network problem 

This paper firstly used remote sensing to identify geographic locations of public institutions. 

Applying clustering algorithms and heuristics, based on results from remote sensing, zones 

are defined and clusters of organizations are identified. Data mining is then used to define 

parameters for mathematical models. Clustering contributed significantly in reducing the 

execution time and making the mathematical models powerful. While remote sensing has 

been used before (e.g.: (Huang, et al., 2016)), To the best of the authors’ knowledge, this 

paper is the first to combine it with clustering algorithm and data mining in EV literature. 

4) Introduction of Importance Factors 

The concept of “Importance Factor” proposed in this paper reflects the importance and 

customer demand of an institution. An “Importance Factor” is computed based on readily 

available information of an institution including the number of employees, the number of 

vehicles, inflows, outflows, as well as the location of an institution within a zone. 

Importance factor is used as a metric to determine the optimal location of EV charging 

station within a zone. This paper further defined Importance Factors for zones and between 

two zones, which are used to compute the costs to open different levels of EV charging 

stations and to find the optimal EV network design. 

 

2. The Electric Vehicle Migration Framework (EVMF)  
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EVMF includes two stages: Offline and Online, as briefly described in Figure 2. We 

present details of EVMF in this section. 

2.1 The Offline Stage 

The Offline Stage involves three steps: identifying geographic locations, clustering, and 

data mining. The Offline Stage generates inputs for the Online Stage. The first offline step 

is to identify geographic locations of institutions in a geographic area studied. Clustering 

algorithms and heuristics are then applied to assign institutions into zones. Finally, at the 

data mining step, all offline data are added into an Excel file, which will be read directly by 

mathematical models at the Online Stage. To reduce the execution time of the mathematical 

models in the Online Stage, it is important to shift as much as possible preparation work 

from online to offline. 

2.1.1 Step 1: Identifying geographic locations 

To optimize the EV network among institutions, the geographic locations of the set of points 

studied (public institutions in this paper) should be identified. Working with satellite 

pictures such as Google Maps and other geographic captures is nowadays an efficient way 

to conduct research on transportation. ArcGIS or QGIS are usually used to prepare a remote 

sensing map. This paper generates remote sensing maps from (Service-public, 2022), an 

official Moroccan government website which provides detailed information of Moroccan 

public institutions. Figure 3 shows the remote sensing map for Rabat, the capital city of 

Morocco, generated from (Service-public, 2022). The map provides the locations of public 

institutions (only ministries are considered) in Rabat. The red index at the top right corner 

of each blue house-shaped icon represents the number of institutions located within that 

area. By zooming in on the map, more details will be provided and all the institutions can 
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be identified. The information provided by the map as well as the institutions locations are 

inputs to the next clustering step. 

Figure 3. The remote sensing map for Rabat 

 

2.1.2. Step 2: Clustering 

In this step, centroid-based clustering (Hartigan & Wong, 1979), also called k-means 

clustering, which is based on the idea of grouping objects based on proximity, is applied in 

this paper. Since this paper seeks to group institutions based on normal HWD ranges 

between 300m and 600m, the centroid-based clustering approach is suitable and efficient. 
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Institutions located within a specified HWD are grouped in the same zone. Heuristics are 

used to handle special institutions or outliers. The heuristic enumerates all special 

institutions and their Importance Factors (details in Section 2.1.4). The special institutions 

are defined either as a new zone or added into the closest zone. In general, a special 

institution with high Importance Factor is defined as a new zone. A special institution 

located around 1km and with low Importance Factor are added to the closest zone. Applying 

the connectivity-based clustering and heuristics, the clustering results for Rabat are shown 

in Figure 4. When the HWD is assumed to be 500m, the 49 institutions considered within 

the geographic area of Rabat can be grouped into 7 zones (the red circles in Figure 4). Each 

zone is given a zone ID. Note that, by varying the HWD from 300m to 600m, the number 

of zones and the institutions’ zone assignment may also change accordingly. In this paper, 

the term “zone”  and “cluster” have the same meaning and will be used interchangably. 

Figure 4. The clustering results for Rabat 
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2.1.3. Step 3: Data Mining 

The data mining step is to prepare inputs for mathematical models using outputs from the 

above steps 1 and 2. An Excel workbook which contains seven worksheets (Data Blocks) 

for the MIPC model and six worksheets for the MIPCH model is used for step 3. The Excel 

worksheets (Data Blocks) are described as follows: 

1) Worksheet (Block) 1: Institutions 

This worksheet contains a summary of institutions data which includes: institution name, 

institution ID, zone assigned, Institution Factor, location of institution, Importance Factor 

of an institution, and cost of building an EV charging station. “institution names” are 

obtained from the step 1 of Offline Stage. “institution IDs” are assigned based on proximity, 

i.e. closer institutions have closer “institution IDs”. “Zone assigned” is decided at the step 

2 of Offline Stage. The “Institution Factor”, “location of institution” are obtained from the 

step 1 of Offline Stage. The Importance Factor of an institution, 𝑖𝑚𝑝𝑖𝑖, is explained in detail 

in Section 2.1.4.  

If an institution is located in the city, the cost of level 2 charging station, 𝑐2𝑖, is computed. 

Otherwise, if a pseudo-institution is located on a highway, the cost of level 3 charging 

station, 𝑐3ℎ𝑖, is computed. Details are given in Section 2.1.4. 

2) Worksheet (Block) 2: Clusters 

This worksheet is a matrix mapping each institution to a zone, which is obtained at the 

“Clustering” step of the Offline Stage. If an institution “i” is assigned to zone “z,” the 

corresponding cell of the matrix takes value of 1, Otherwise, 0. This matrix is used as direct 

input to mathematical models (sets values to parameter 𝑐𝑙𝑖,𝑧). 

3) Worksheet (Block) 3: Importance of Institutions 
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This worksheet lists the Importance Factor of each institution, either in a city or on a 

highway. This table is used as direct input to mathematical models (sets values to parameter 

𝑖𝑚𝑝𝑖𝑖). 

4) Worksheet (Block) 4: Cost of Level 1 Charging Stations 

This worksheet computes and lists the cost to install a level 1 charging station at a zone 

based on the average Importance Factor of all the institutions assigned to the zone. This 

table is used as direct input to mathematical models (sets value to parameter 𝑐1𝑧). 

5) Worksheet (Block) 5: Cost of Level 2 Charging Stations 

This worksheet lists the cost to install a level 2 charging station at an institution if the 

institution is located inside a city. This table is used as direct input to mathematical models 

(sets value to parameter 𝑐2𝑖). 

6) Worksheet (Block) 6: Cost of Level 3 Charging Stations 

For institutions located in a city, this worksheet computes the cost to install a level 3 

charging station between two zones in a city. The computation details are explained in 

Section 2.1.4. The resulting matrix is used as direct input to mathematical models (sets 

values to parameter 𝑐3𝑐
𝑧,𝑧′

). For pseudo-institutions located on a highway, this worksheet 

lists the cost of level 3 charging station at each institution, which is used as direct input to 

mathematical models (sets values to parameter 𝑐3ℎ𝑖).   

7) Worksheet (Block) 7: Importance between two zones (Only for model MIPC). 

This worksheet computes the average Importance Factor between two zones (i.e., 𝑖𝑚𝑝̅̅ ̅̅ ̅𝑧,𝑧′). 

The value of 𝑖𝑚𝑝𝑧,𝑧′is then computed based on 𝑖𝑚𝑝̅̅ ̅̅ ̅𝑧,𝑧′  and the distance between two 

zones and used as direct input to mathematical models (sets values to parameter 𝑖𝑚𝑝𝑧,𝑧′). 
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2.1.4. Determination of key parameters 

Based on authors’ experiences on the EV industry, the determination of the following key 

parameters is explained in detail. The values of these parameters are computed at the Offline 

Stage and used as direct inputs to Online Stage. 

𝒊𝒎𝒑𝒊𝒊= the Importance Factor of institution i. The parameter 𝑖𝑚𝑝𝑖𝒊 is computed based on 

institution i’s location within its zone and other factors (i.e.,the total number of 

employees, fleet size, traffic inflows, and traffic outflows). The computation of 𝑖𝑚𝑝𝑖𝒊 is 

illustrated using the example of a public institution, the Ministry of Economy and Finance 

of Morocco (MEFM) located in Rabat, as follows. 

Table 2. Data on MEFM  

Institution 
ID 

Zone 
ID 

Institution 
Factor Location Institution 

Importance Factor 

i14 z3 90 M 100 

 

As shown in Table 2, MEFM is assigned an ID of “i14”. It is assigned to zone “z3” after 

“Clustering”. MEFM has an “Institution Factor” of 90 which is determined by four traits: 

number of employees, number of vehicles, magnitude of inflows, and magnitude of 

outflows. The four traits, representing the movement around the institution and 

consequently the usage of its EV fleet, can be obtained from public sources (e.g., the data 

on MEFM were obtained from Moroccan Department of Administration Reform (MDAR, 

2022). Each trait of an institution is given a score from zero to a maximum score as listed 

in Table 3, based on the institution’s information. The total score of the four traits accounts 

for the “Institution Factor” of an institution. 
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Table 3. Maximum score on each trait of an institution 

Factor Number of 
Employees 

Number of 
Vehicles 

Magnitude of 
Inflows 

Magnitude of 
Outflows Location 

Maximum 
Score 25 25 20 20 10 

 

Another factor considered separately is the location of an institution inside a zone. If an 

institution is located close to or at the center of the zone, a score of 10 is given to its 

“Location” factor. The sum of the “Institution factor” and the “Location” factor gives the 

“Importance Factor” of an institution. The maximum value of “Importance Factor” is 

therefore 100. In our example, MEFM is scored 25 on the factor “Number of Employees” 

given its high number of employees, 25 on the factor “Number of Vehicles” given the high 

number of vehicles MEFM uses to transport its employees, and scored 20 on both the 

“Magnitude of Inflows” and “Magnitude of Outflows” given the high traffic inflows and 

outflows of MEFM’s vehicles. Thus, the “Institution Factor” of MEFM is 90 

(25+25+20+20). “M” in Table 2 means that MEFM is located in the middle of zone “z3” 

based on the clustering algorithm. Hence, MEFM has a score of 10 for its “Location” factor. 

MEFM’s “Importance Factor” is thus 100 (90+10), as listed in the last column of Table 2. 

The same approach is applied to obtain the Importance Factors of all other public 

institutions considered in this paper. 

𝒊𝒎𝒑𝒇𝒛𝒛 = the Importance Factor of zone z. The parameter 𝑖𝑚𝑝𝑓𝑧𝑧 is computed by taking 

the average of the Importance Factors of all institutions assigned to zone z as follows: 

𝑖𝑚𝑝𝑓𝑧𝑧 =
∑ 𝑖𝑚𝑝𝑖𝑖𝑖∈𝒁𝑰𝑪𝒛,𝒊

|𝑍𝐼𝐶𝑧,𝑖|
 

Where 𝑍𝐼𝐶𝑧,𝑖is the set of institutions assigned to zone z; |𝑍𝐼𝐶𝑧,𝑖| is the cardinal number of 

set 𝑍𝐼𝐶𝑧,𝑖. 
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𝒊𝒎𝒑𝒛,𝒛′ = the Importance Factor between zones z and 𝑧′. The parameter 𝑖𝑚𝑝𝑧,𝑧′ reflects 

the magnitude of traffic flow between two zones. We first compute the average of two 

zone Importance Factors: 

𝑖𝑚𝑝̅̅ ̅̅ ̅𝑧,𝑧′ =
𝑖𝑚𝑝𝑓𝑧𝑧 + 𝑖𝑚𝑝𝑓𝑧𝑧′

2
 

Then, 𝑖𝑚𝑝𝑧,𝑧′, is obtained as follows: 

𝑖𝑚𝑝𝑧,𝑧′ = {
0,                  𝑖𝑓 |𝐷𝐼𝑆𝑇𝑧,𝑧′| < 𝐸𝑉𝐷𝐼𝑆𝑇 

𝑖𝑚𝑝̅̅ ̅̅ ̅𝑧,𝑧′,       𝑖𝑓 |𝐷𝐼𝑆𝑇𝑧,𝑧′| ≥ 𝐸𝑉𝐷𝐼𝑆𝑇
 

Where |𝐷𝐼𝑆𝑇𝑧,𝑧′| is the distance between zones z and 𝑧′. EVDIST is a distance threshold. 

In general, it is not necessary to open a level 3 fast charging station within a city because 

EVs have longer time for charging (with backup EVs available) and zones in a city are 

usually not very far from each other. EVs can move between zones without requiring a stop 

for charging. An EV can be charged at a level 2 charging station of the source zone and if 

necessary at a level 2 charging station of the destination zone. Thus, when the distance 

between zones z and 𝑧′, |𝐷𝐼𝑆𝑇𝑧,𝑧′|,  is less than a distance threshold, EVDIST, it is not 

necessary to open a level 3 charging station because EVs can move between the two zones 

without requiring a stop for charging. 𝑖𝑚𝑝𝑧,𝑧′ is thus set to 0. EVDIST is set to 30Km in 

this paper. For zones which are far from each other (|𝐷𝐼𝑆𝑇𝑧,𝑧′| ≥ 𝐸𝑉𝐷𝐼𝑆𝑇), 𝑖𝑚𝑝𝑧,𝑧′ is set 

to 𝑖𝑚𝑝̅̅ ̅̅ ̅𝑧,𝑧′, which captures the traffic flows between two zones.  When two zones in a city 

are both important (the parameter 𝑖𝑚𝑝̅̅ ̅̅ ̅𝑧,𝑧′ has high value), the traffic flows between them 

are usually high. In situations where two zones are far and 𝑖𝑚𝑝𝑧,𝑧′is also high, it becomes 

necessary to set up a level 3 fast charging station between two zones so that EVs can be 

charged rapidly in between. 
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𝒄𝟏𝒛=the cost to open a level 1 charging station in zone z.  The parameter 𝑐1𝑧 is computed 

as follows: 

𝐜𝟏𝑧 = {

𝑖𝑚𝑝𝑓𝑧𝑧

𝐼𝑚𝑝𝐵𝑎𝑠𝑒
×  𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙1 ,   𝑖𝑓 𝑖𝑚𝑝𝑓𝑧𝑧 ≥ 𝐼𝑚𝑝𝐵𝑎𝑠𝑒 

𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where FixedCostLvl1 is the average fixed cost of a level 1 charging station, ImpBase is the 

base Importance Factor of an institution. When 𝑖𝑚𝑝𝑓𝑧𝑧 is greater than or equal to ImpBase, 

the cost 𝑐1𝑧 is proportional to 𝑖𝑚𝑝𝑓𝑧𝑧. The higher the Importance Factor of a zone, the 

higher the cost 𝑐1𝑧. The Higher Importance Factor of a zone means the zone is busier; a 

larger charging station that can host more EVs is then needed. Such proportional 

relationship is based on authors’ field experiences, which holds for all levels of charging 

stations. ImpBase represents the Importance Factor of an average institution operating at 

basic capacity. Since 𝑖𝑚𝑝𝑓𝑧𝑧 is the average of the Importance Factors of all institutions 

assigned to zone z, the value of 𝑖𝑚𝑝𝑓𝑧𝑧  of an average zone with average institutions 

operating at basic capacities is also ImpBase. Thus, ImpBase is also the base Importance 

Factor of a zone. If 𝑖𝑚𝑝𝑓𝑧𝑧 is less than ImpBase, the cost 𝑐1𝑧 is fixed to a minimum cost, 

FixedCostLvl1, which represents the cost necessary to set up an average level 1 charging 

station and operate at basic capacity. To set up such a station, the cost is between $300 and 

$600 while the parts cost varies between $0 and $1700 based in authors’ experience. We 

assume in this paper that the level 1 station fixed cost (FixedCostLvl1) is $500 ($300 for 

the station and $200 for the labor). The cost 𝑐1𝑧 is incurred if and only if a level 1 charging 

station is decided to be opened in zone z. 

𝒄𝟐𝒊= the cost of opening a level 2 charging station at institution i. The parameter 𝑐2𝑖 is 

computed as follows: 
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c2𝑖 = {

𝑖𝑚𝑝𝑖𝑖

𝐼𝑚𝑝𝐵𝑎𝑠𝑒
×  𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙2 ,   𝑖𝑓 𝑖𝑚𝑝𝑖𝑖 ≥ 𝐼𝑚𝑝𝐵𝑎𝑠𝑒 

𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙2,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where FixedCostLvl2 is the average fixed cost of a level 2 charging station. When the 

Importance Factor of an institution, 𝑖𝑚𝑝𝑖𝑖, is greater than or equal to ImpBase, the cost 𝑐2𝑖 

is proportional to 𝑖𝑚𝑝𝑖𝑖. If 𝑖𝑚𝑝𝑖𝑖 is less than ImpBase, the cost 𝑐2𝑖 is fixed to a minimum 

cost, FixedCostLvl2, which represents the cost necessary to set up an average level 2 station 

operating at basic capacity. To set up such a station, the cost is between $500 and $2,200 

while the parts cost varies between $1,200 and $3,300 based in authors’ experience. 

Parameter FixedCostLvl2 is assumed to be $5,000 ($2,000 for the setup and $3,000 for the 

labor) in this paper. 

𝒄𝟑𝒄𝒛,𝒛′  = the cost of opening a level 3 charging station between zones z and 𝑧′ in a city.  

The cost 𝑐3𝑐𝑧,𝑧′is computed as follows: 

𝑐3𝑐𝑧,𝑧′ = {

𝑖𝑚𝑝
𝑧,𝑧′

𝐼𝑚𝑝𝐵𝑎𝑠𝑒
×  𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙3 ,   𝑖𝑓 𝑖𝑚𝑝𝑧,𝑧′ ≥ 𝐼𝑚𝑝𝐵𝑎𝑠𝑒 

𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙3,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

Where FixedCostLvl3 is the average fixed cost of a level 3 charging station. When 𝑖𝑚𝑝𝑧,𝑧′ 

is greater than or equal to ImpBase, the cost 𝑐3𝑐𝑧,𝑧′is proportional 𝑖𝑚𝑝𝑧,𝑧′. The parameter 

FixedCostLvl3 represents the fixed cost necessary to set up a level 3 station operating at 

basic capacity. To set up such a station, the station cost is between $20,000 and $50,000 

while the parts cost is above $10,000 based on authors’ experience. Parameter 

FixedCostLvl3 is assumed to be $30,000 ($20000 for the station and $10000 for the labor). 

𝒄𝟑𝒉𝒊   = the cost of opening a level 3 station on a highway pseudo-institution i.  Each 

potential charging stations on a high way is defined as a pseudo-institution. The cost 𝑐3ℎ𝒊 

represents the cost necessary to build a level 3 station at a pseudo-institution i:  
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𝑐3ℎ𝑖 = {

𝑖𝑚𝑝𝑖𝑖

𝐼𝑚𝑝𝐵𝑎𝑠𝑒
×  𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙3 ,   𝑖𝑓 𝑖𝑚𝑝𝑖𝑖 ≥ 𝐼𝑚𝑝𝐵𝑎𝑠𝑒 

𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝐿𝑣𝑙3,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

2.2. The Online Stage 

The Online Stage includes executing mathematical models and conducting scenario 

analysis. We now present two Mixed Integer Linear Programming (MILP) models for EV 

charging network design. The first model is to design an EV charging network for 

institutions within a geographic area, usually in a major city (MIPC). The second model 

extends MIPC to a network of several cities linked through highways (MIPCH). 

2.2.1. The MIPC model 

The MIPC model is to design an EV charging network for institutions within a geographic 

area or a city. The Appendix contains the sets, parameters, and variables used in MIPC. 

Key parameters are explained in Section 2.1.4. 

 

Objective Function 

 

The objective is to minimize the total cost of opening all levels of EV charging stations 

within a network of institutions. 

Minimize    𝑇𝐶 = ∑ 𝑐1𝑧𝑙1𝑧𝑧∈𝑍 + ∑ 𝑐2𝑖𝑙2𝑖𝑖∈𝐼 + ∑ ∑ 𝑐3𝑐
𝑧,𝑧′

𝑙3𝑐
𝑧,𝑧′𝑧,𝑧′∈𝑍∩𝑧≠𝑧′  (1) 

If a level 1 (𝑙1𝑧), level 2 (𝑙2𝑖), or level 3 (𝑙3𝑐
𝑧,𝑧′

) EV charging station is opened, its 

respective costs is incurred and added to the total cost, TC. This paper seeks to find the 

minimum TC as an important input for decision makers to migrate EV network in a 

geographic area. 
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Constraints 

We now present the following constraints applicable to MIPC. 

1) Within each zone, only one level 2 charging station is opened. 

∑ 𝑐𝑙𝑖,𝑧𝑙2𝑖𝑖∈𝑍𝐼𝐶𝑧,𝑖 = 1,   ∀𝑧 ∈ 𝑍       (2) 

Each institution is assigned to a specific geographic zone. Among all institutions within a 

zone, one institution is selected to set up a level 2 charging station, which in turn contains 

several level 2 electric terminals. Opening a level 2 charging station is the most suitable 

choice for a zone within a city because a leve1 1 charging station takes hours to charge an 

EV, which is non-operable for institutions operating fleets of EVs, while opening level 3 

charging stations is not economical given significantly higher installation and equipment 

costs. Since the geographic size of each zone is within HWD, opening one level 2 charging 

station is enough and EVs operating in a zone can be charged easily. 

2) Within each zone, the most important institution is selected to open a level 2 charging 

station. 

∑ 𝑐𝑙𝑖,𝑧𝑖𝑚𝑝𝑖𝑖𝑙2𝑖𝑖∈𝑍𝐼𝐶𝑧,𝑖
≥ max

𝑖∈𝑍𝐼𝐶𝑧,𝑖

𝑐𝑙𝑖,𝑧𝑖𝑚𝑝𝑖𝑖 , ∀𝑧 ∈ 𝑍    (3) 

Since we seek the centralization of EV charging within each zone, selecting the most 

important institution, i.e., the one which has high traffic magnitude while being close to the 

center of the zone, is more convenient and operational. Indeed, such institution is within the 

HWD from other institutions within the same zone and has higher flows within the zone. 

Hence, locating a level 2 charging station at the most important institution ensures an 

efficient handling of transportation within the zone as well as with other zones. 

3) Within each zone, a level 1 charging station is opened when the zone Importance Factor 

is high. 

𝑖𝑚𝑝𝑧 + 𝐵𝑀1 × 𝑙1𝑧 ≥ 𝑖𝑚𝑝𝑓𝑧𝑧, ∀𝑧 ∈  𝑍     (4) 
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Within a zone, one institution is selected to host a level 2 charging station, which can be 

used throughout a day to charge EVs. If a zone is particularly important (consists of 

institutions with high Importance Factors and hence operating more EVs), the zone is 

further supported by a level 1 charging station where EVs of public institutions can be 

charged overnight and be ready the next day. In constraint (4), a level 1 charging station is 

opened when the important factor of the zone is higher than a specific importance threshold, 

impz. BM1 is a large number whose value is set to (100-impz), the smallest possible value 

of BM1. 

4) A level 3 charging station is opened when the Importance Factor between two zones is 

high. 

𝑖𝑚𝑝𝑏𝑧 + 𝐵𝑀2 × 𝑙3𝑐
𝑧,𝑧′

≥ 𝑖𝑚𝑝
𝑧,𝑧′

,  ∀𝑧, 𝑧′ ∈  𝑍, 𝑧 ≠ 𝑧′    (5) 

The Importance Factor between two zones z and 𝑧′, 𝑖𝑚𝑝
𝑧,𝑧′

, reflects the magnitude of 

traffic flows between two zones. When  𝑖𝑚𝑝
𝑧,𝑧′

, is higher than a specific threshold, impbz, 

a level 3 charging station is opened. Within a city, it is usually not necessary to open a level 

3 charging station given short distances among zones. This paper takes into account special 

cases that may occur within a city when the traffic flow between two zones are very high 

and it becomes necessary to add a fast charging station (i.e., level 3) to avoid traffic flow 

interruptions. In constraint (5), BM2 is a large number whose value is set to (100- impbz), 

the smallest possible value of BM2. 

Assumptions 

The following assumptions are used for MIPC: 

▪ In most cities of the world, traditional public buses are operated by city governments. 

The buses shuttle among zones of a city and are scheduled as a whole by the city. In 

this paper, we assume a city government replaces traditional public buses with fleets 
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of EVs serving public institutions in a city. To manage EV fleets, opening one central 

EV charging station serving all EVs may not be feasible given limited driving range of 

EVs. This paper assumes that EV charging stations are distributed among public 

institutions. The MIPC model seeks to find the optimal locations of EV charging 

stations. 

▪ This paper assumes that EVs shuttle within a zone and/or between zones. EVs are 

shared by all zones and can be moved to high demand zones. EVs can be charged at 

any zone and parked overnight at any zone. 

▪ An EV user (an EV passenger or an EV driver) may face three scenarios: (i) The user 

can use available EVs within his/her institution; (ii) The user needs to walk to the 

institution where the charging station is installed if there is no EV available at his/her 

institution; (iii) The user waits for the prospective arrival of an EV at his institution. 

To cope with the above scenarios, each zone consists of institutions that are within the 

walking range of a normal human, i.e., between 300m to 600m. EV users can thus walk 

among institutions located in the same zone. 

▪ One EV charging station contains several electric terminals of the same type. An EV 

charging station can thus serve several EVs simultaneously. The number of electric 

terminals within one charging station can be determined based on the average number 

of EVs, traffic flows and other factors, which is out of the scope of this paper. 

Results of MIPC and Scenario Analysis 

The MIPC model, which includes objective function (1) and constraints (2)-(5), is applied 

to the capital of Morocco, Rabat, as shown in Figure 4. There are 49 major public 

institutions in Rabat which are considered in the model. To save space, Table 4 provides 

the detailed data only for the first 6 institutions. The clustering step of Offline Stage of 

EVMF provided the zone assignment of each institution shown in the second column. The 
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Institution Factor/Location/ Importance Factor of each institution is shown in columns 3, 4, 

5, respectively. The last column provides the computed costs for opening a level 2 charging 

station within each institution. 

Table 4.  Partial Data for MIPC model 

ID Zones Institution 
Factor Location Importance  

Factor 
Cost  

Level 2 ($) 

i1 z1 70 M 80 5714 

i2 z1 70 M 80 5714 

i3 z2 70 M 80 5714 

i4 z2 80 M 90 6429 

i5 z3 90 - 90 6429 

i6 z3 70 - 70 5000 

 

The parameter HWD can significantly affect the model size and results. Table 5 lists the 

MIPC model size at different HWDs. With the increase of HWD, the number of zones 

assigned in city Rabat decreases, and hence the decrease of the MIPC model size. 

Table 5. MIPC Model Size at Different HWD 

HWD 
(m) 

# Single 
Equations 

# Single 
Variables 

# Discrete 
Variables 

300 271 290 289 

400 131 160 159 

500 71 106 105 

600 41 80 79 

 

ILOG CPLEX 12.7 is used to solve all the models in this paper on a HP computer with Intel 

Core i7 7th Gen. All CPLEX settings follow directly from the system default. Table 6 

summarizes the results from the MIPC model for city Rabat. In Table 6, “# Level 1/# Level 

2/# Level 3” shows the total number of level 1/level 2/level 3 charging station opened, 
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respectively. We can see that the total costs are negatively correlated with the HWD. A 

shorter HWD (e.g., 300 m) leads to more zones assigned and more EV charging stations 

opened and hence higher costs. This trend can also be observed in Figure 5. It can be also 

observed that, with the increase of HWD, “# Zones” and the “Total Cost” decrease at similar 

trend. The model execution is very efficient with solution time less than 0.1 second. With 

such short MIPC execution times, policy makers can easily simulate various scenarios for 

EV migration. The Offline Stage of EVMF has prepared necessary parameters and reduced 

the computational load of the model MIPC.  

Table 6. MIPC Model Results 

 

 

 

 

 

 

 

Figure 6. The Relationship between Total Cost and HWD (One City) 
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Total Cost ($)

# Zones

HWD (m) Sol. 
Time (s) 

# 
Zones 

# Level 
2 

# Level 
1 

# Level 
3 

Total Cost 
($) 

300 0.09 15 15 5 0  90,283.7  

400 0.08 10 10 3 0  63,427.8  

500 0.06 7 7 2 0  44,434.1  

600 0.06 5 5 2 0  33,324.9  

1000 0.05 4 4 2 0 27,606.1 
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This papers also tests scenarios when HWD is 700/800/900/1000 m. Further increase of 

HWD beyond 1000 m becomes impractical for human walking. When HWD is 700/800/900 

m, the number of zones obtained by clustering is the same as when HWD is 600 m according 

to the clustering algorithm. In Figure 7, we can see that, when HWD increases beyond 600, 

the total cost reduces at slower speed. Such kind of analysis can provide importance insights 

for decision making. 

2.2.2. The MIPCH Model 

The MIPCH model extends MPIC model to include a network of cities connected through 

highways. The Appendix contains the sets, parameters, and variables used in MIPCH. Key 

parameters are explained in Section 2.1.4. 

Objective Function 

 

The objective is to minimize the total cost of opening three levels of charging stations within 

cities and on highways connecting cities. 

Minimize    TC = ∑ 𝑐1𝑧𝑙1𝑧𝑧∈𝑍𝐶 + ∑ 𝑐2𝑖𝑙2𝑖𝑖∈𝐼𝐶 + ∑ 𝑐3ℎ𝑖𝑙3ℎ𝑖𝑖∈𝐼𝐻      (6) 

Similar to model MIPC, level 2 charging stations may be opened within a city (𝑙2𝑖 = 1) 

and level 1 charging stations may be opened when a zone’s Importance Factor is high 

(𝑙1𝑧 = 1). On highways, only level 3 charging stations are opened due to the requirement 

of short EV charging time (𝑙3ℎ𝑖 = 1). An EV can complete charging at a level 3 charging 

station in half an hour while it takes a few hours for level 1 or level 2 charging stations. 

Constraints 

 

We now present the following constraints applicable to MIPCH.  

1) Within each zone in cities, only one level 2 charging station is opened. 
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∑ 𝑐𝑙𝑖,𝑧𝑙2𝑖𝑖∈𝑍𝐼𝐶𝑧,𝑖
= 1,   ∀𝑧 ∈ 𝑍𝐶        (7) 

Without loss of generality, institutions at different cities are indexed consecutively. Zones 

assigned to institutions at different cities are also indexed consecutively. 

2) Within each zone in cities, the most important institution is selected to open a level 2 

charging station. 

∑ 𝑐𝑙𝑖,𝑧𝑖𝑚𝑝𝑖𝑖𝑙2𝑖𝑖∈𝑍𝐼𝐶𝑧,𝑖
≥ 𝑚𝑎𝑥

𝑖∈𝑍𝐼𝐶𝑧,𝑖

𝑐𝑙𝑖,𝑧𝑖𝑚𝑝𝑖𝑖,   ∀𝑧 ∈ 𝑍𝐶     (8) 

3) Within each zone in cities, a level 1 charging station is opened when the zone 

Importance Factor is high. 

𝑖𝑚𝑝𝑧 + 𝐵𝑀1 × 𝑙1𝑧 ≥ 𝑖𝑚𝑝𝑓𝑧𝑧, ∀𝑧 ∈ 𝑍𝐶      (9) 

4) Within each zone on highways, only one level 3 charging station is opened. 

∑ 𝑐𝑙𝑖,𝑧𝑙3ℎ𝑖𝑖∈𝐼𝐻∩𝑍𝐼𝐶𝑧,𝑖
= 1, ∀𝑧 ∈ 𝑍𝐻       (10) 

In this paper, each highway between two cities is segmented into several zones (set ZH) 

depending on highway length. Each highway zone contains several pseudo-institutions (set 

IH), each representing a potential level 3 charging station. Among these pseudo-institutions 

within a highway zone, one is selected to be the location of a level 3 charging station, which 

contains several level 3 electric terminals. EVs traveling between cities can be charged 

rapidly on highways at level 3 charging stations. 

5) Within each highway zone, the most important pseudo-institution is selected to open a 

level 3 charging station. 

∑ 𝑐𝑙𝑖,𝑧𝑖𝑚𝑝𝑖𝑖𝑙3ℎ𝑖𝑖∈𝐼𝐻∩𝑍𝐼𝐶𝑧,𝑖
≥ 𝑚𝑎𝑥

𝑖∈𝐼𝐻∩𝑍𝐼𝐶𝑧,𝑖

𝑐𝑙𝑖,𝑧𝑖𝑚𝑝𝑖𝑖,   ∀𝑧 ∈ 𝑍𝐻   (11) 

Assumptions 

Besides the assumptions used in model MIPC, the following additional assumptions are 

used for MIPCH: 
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▪ This paper assumes that EVs shuttle within a zone, between zones, and on highways. 

EVs are shared by all zones of all cities. EVs can be moved to high demand zones 

and can be charged in any zone. This is ensured by government fleet management 

centralization.  

▪ A highway is segmented into zones based on a specific distance (30km is used in 

this paper). It means that an EV can be charged every 30 Km. This paper assumes 

that a 30km of highway segmentation distance (HSD) is sufficient enough to tackle 

the range anxiety with a highway. The impact of different HSDs is simulated and 

discussed below. 

▪ Pseudo-institutions are either existing gas stations or newly opened terminals 

located along highways which can be potentially used as EV charging locations. 

The Importance Factor of a pseudo-institution is obtained based on factors such as 

the size of its parking lot, ease of access from highway, and availability of services 

such as restaurants, shops, and toilets etc. The more important a pseudo-institution, 

the more suitable it is for EV charging. 

▪ For simplicity, in the MIPCH model, it is assumed that level 3 charging stations are 

needed only on highways. They are not needed within cities. This assumption can 

be released by adding a constraint similar to constraint (5) of model MIPC. 

Results of MIPCH and Scenario Analysis 

To illustrate the MIPCH model, three major cities of Morocco, the capital Rabat, 

Casablanca, and Fes linked through two highways are used as an example. Figure 6 shows 

the map of the three cities. 

There are 49/127/39 major public institutions in Rabat/Casablanca/Fes considered in the 

model. The data of the institutions in Rabat are the same as those used in model MIPC. 

From data mining step, parameters are defined the same way as in model MIPC. Three 
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highway zones and 17 pseudo-institutions are considered on the highway between Rabat 

and Casablanca. To save space, Table 7 lists 9 out of the 17 pseudo-institutions considered 

on the highway between Rabat and Casablanca. Seven highway zones and 27 pseudo-

institutions are considered on the highway between Rabat and Fes. 

Figure 6. The Three Cities and Two Highways used in model MIPCH 

 

Table 7. Partial Data of Pseudo-Institutions on the Highway Between Rabat and 
Casablanca 

Institution 
ID 

Assigned 
Zone 
ID 

Importance  
Factor 

Cost of Opening a 
Level 3 Charging 

Station, $ 
i216 z50 67 28,714 
i217 z50 81 34,714 
i218 z50 72 30,857 
i219 z50 63 27,000 
i220 z51 65 27,857 
i221 z51 65 27,857 
i222 z51 84 36,000 
i223 z51 74 31,714 
i224 z51 64 27,429 

 

Two parameters, HWD and HSD, can significantly affect the model size and results. To 

understand the impacts at different scenarios, a learning cycle is formed which involves 

both Offline and Online Stages. The results for different sets of HWDs and HSDs are 



33 
 

presented in Table 8 and Table 9. Table 8 and Figure 7 show results at different HWDs with 

HSD fixed to 30 Km. Similar to results from MIPC, shorter HWD leads to more zones 

assigned and more EV charging stations to be opened and hence higher costs. Table 9 and 

Figure 8 show results at different HSDs with HWD fixed to 500m. We can see that, with 

the increase of HSDs, less zones and EV charging stations, in particular, level 3 charging 

stations, are required. The total cost is hence reduced. 

Table 8. Results With HSD=30km 

HWD (m) Sol. 
Time (s) 

# 
Zones 

# Level 
2 

# Level 
1 

# Level 
3 

Total Cost 
($) 

300 0.03 80 70 21 10  795,134.1  

400 0.03 66 56 16 10  714,094.4  

500 0.06 59 49 10 10  668,078 .1 

600 0.06 45 35 9 10  587,332.6  

 

 

Figure 7. The Relationship between Total Cost and HWD (With HSD=30km) 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

300 400 500 600

N
um

be
r o

f Z
on

es

To
ta

l C
os

t (
$)

HWD (m)

The Relationship between Total Cost and HWD
(With HSD=30km)

Total Cost ($)

# Zones



34 
 

Table 9. Results With HWD=500m 

HSD (km) Sol. 
Time(s) 

# 
Zones 

# Level 
2 

# Level 
1 

# Level 
3 

Total Cost  

($) 

15 0.03 70 49 10 21  1,020,792.4  

30 0.06 59 49 10 10  668,078 .1 

40 0.10 57 49 10 8 598,847.8  

60 0.11 53 49 10 4  457,419.2 

 

Figure 8. The Relationship between Total Cost and HSD (With HWD=500m) 

 

The MIPCH model size in different settings is presented in Table 10 and Table 11. The 

model execution time is less than 1s. The results show the scalability of the MIPCH model. 

The model can be extended to optimize an EV network of several cities and highways. 

Results from the learning cycle provide essential insights on EV migration in a region or a 

country. 
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Table 10. Model Size With HSD=30km 

HWD (m) # Single 
Equations 

# Single 
Variables 

300 231 330 

400 189 316 

500 168 309 

600 126 295 

 

 

Table 11. Model Size With HWD=500m 

HSD (km) # Single 
Equations 

# Single 
Variables 

15 190 309 

30 168 309 

40 164 309 

60 156 309 
 

3. Conclusions 

This paper has developed an efficient two-stage framework, EVMF, to assist 

decision makers for EV migration. The Offline Stage involves three steps: identifying 

geographic locations, clustering, and data mining. The Online Stage includes two 

mathematical models (MIPC and MIPCH) and scenario analysis. EVMF considers all the 

institutions and fleets of EVs as a whole, and develops integrated models to find optimal 

solutions. EVMF is applied to the capital of Morocco (Rabat) and also to three major 

Moroccan cities (Rabat, Casablanca, and Fes) linked with two highways. Optimal results 

for various scenarios are obtained with rapid solution time (less than 1 second). The MIPC 

model tested scenarios with human walking distance ranges from 300 to 1000 m. The 

MIPCH model tested scenarios with human walking distance ranges from 300 to 600 m and 

with Highway Segmentation Distance ranges from 15 to 60 km. The total cost at different 
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scenarios provide important insights for decision making. The results demonstrated the 

celerity, scalability, and flexibility of the framework. EVMF is particularly useful for 

developing countries lacking tools in making efficient decisions for EV migration. 

This research opens the window towards another important topic: EV routing and 

scheduling. Once an EV network is determined following EVMF, future work can include 

routing and scheduling to minimize traveling time and costs of EVs, leading to better 

management and utilization of existing charging stations and better traffic flow balance 

among all zones either in cities or on highways. Even though the EV charging stations 

designed in this paper are used to serve EV fleets for public institutions, it is possible to 

share such charging stations with private EVs. With demand data from private EVs within 

a region or among several regions, future research can extend models in this paper to design 

EV networks which can serve both public and private EV fleets. EVMF can also be readily 

extended to include city residential areas by adding zones from residential areas. 
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Appendix Definitions of indices, sets, parameters, and variables 

a) Indices 

i = institutions, public institutions in regions or pseudo-institutions on highways, i= 
1,2, …, I. 

z, 𝑧′= zones, a cluster of neighboring institutions, z, 𝑧′=1,2,…, Z. 

b) Sets 

I = set of all institutions in cities or pseudo-institutions on highways. 

IC = set of institutions in cities. 

IH= set of pseudo-institutions on highways. 

Z= set of zones assigned to institutions in cities or pseudo-institutions on highways. 

ZC= set of zones assigned to institutions in cities. 

ZH= set of zones assigned to pseudo-institutions on highways. 

𝑍𝐼𝐶𝑧,𝑖 = set of institutions assigned to zone z. 

c) Parameters 

𝑐1𝑧= The cost to open a level 1 charging station in zone z. This cost is incurred only 

if a zone is very important. 

𝑐2𝑖= The cost of opening a level 2 charging station at institution i. 

𝑐3𝑐
𝑧,𝑧′

 = The cost of opening a level 3 charging station between zones z and 𝑧′ in a 

region or a city. 

𝑐3ℎ𝑖= The cost of opening a level 3 charging station at pseudo-institution i. 

𝑐𝑙𝑖,𝑧 = A matrix mapping institutions to zones. 𝑐𝑙𝑖,𝑧 takes value of 1 if institution i is 

assigned to zone z and 0 otherwise. The mapping is done offline at the “Clustering” 

step of the Offline Stage. The values are stored at Worksheet (Block) 2. 

|𝐷𝐼𝑆𝑇𝑧,𝑧′| = the distance between zones z and 𝑧′. 

EVDIST = a distance threshold. EVDIST is set to 30Km in this paper taking into 

account EV range anxiety. 
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𝑖𝑚𝑝𝑖𝑖= The Importance Factor of institution i. 

ImpBase = the base Importance Factor of institutions. In this paper, its value is 

assumed to be 70. 

𝑖𝑚𝑝𝑓𝑧𝑧 = The Importance Factor of zone z.  

𝑖𝑚𝑝𝑧,𝑧′ = the Importance Factor between zones z and 𝑧′. 

𝑖𝑚𝑝̅̅ ̅̅ ̅𝑧,𝑧′= the average of Importance Factors of zones z and 𝑧′. 

impbz = the threshold of the Importance Factor between two zones to set up a level 3 

charging station. impbz is set to 95 in this paper. The value of impbz can be adjusted 

according to factors such as available budget, the frequency and urgency of activities, 

the city role in a country, and other factors. 

impz = the threshold for a zone to set up a level 1 charging station. impz is set to 80 in 

this paper. The value of impz can be adjusted according to factors such as available 

budget, facility availability, nature of working, and other factors. 

BM1 = a large number whose value is set to (100-impz), the smallest possible value 

of BM1. 

BM2 = a large number whose value is set to (100- impbz), the smallest possible value 

of BM2. 

FixedCostLvl1 = the fixed cost necessary to set up an average level 1 charging station 

operating at basic capacity. It is assumed to be $500 in this paper. 

FixedCostLvl2 = the fixed cost necessary to set up an average level 2 charging station 

operating at basic capacity.  It is assumed to be $5,000 in this paper. 

FixedCostLvl3 = the fixed cost necessary to set up an average level 3 charging station 

operating at basic capacity between zones.  It is assumed to be $30,000. 

d) Variables 
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TC = The total cost of setting up an EV charging network. 

𝑙1𝑧 = Binary variable. It takes values of 1 if a level 1 charging station is to be opened 

in zone z and 0 otherwise. 

𝑙2𝑖 = Binary variable. It takes value of 1 if a level 2 charging station is to be opened 

at institution i and 0 otherwise. 

𝑙3𝑐
𝑧,𝑧′

= Binary variable. It takes value of 1 if a level 3 charging station is to be 

opened between zones z and 𝑧′in a region or a city and 0 otherwise. 

𝑙3ℎ𝑖 = Binary variable. It takes value of 1 if a level 3 charging station is to be opened 

at pseudo-institute i and 0 otherwise. 
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